Synlett 2023; 34(18): 2215-2219 DOI: 10.1055/s-0040-1720074
cluster
Modern Boron Chemistry: 60 Years of the Matteson Reaction
Hemiboronic Acid-Catalyzed Reduction of α,β-Unsaturated Ketones with Reagent-Controlled Chemoselectivity
Jason P. G. Rygus
,
Daniel B. Boateng
,
Dennis G. Hall∗
We thank the Natural Sciences and Engineering Research Council of Canada (grant RGPIN-2017-05086 for D.G.H.; CGS-D scholarship for J.P.G.R.) and the Province of Alberta for financial support.
Dedicated to Professor Donald Matteson in recognition of his seminal contributions to organoboron chemistry.
Abstract
The use of an air-stable cationic hemiboronic acid catalyst for the chemoselective reduction of enones is described. By changing the identity and stoichiometry of the silane reducing agent, either the conjugate reduction products or the fully reduced products can be obtained in high selectivity. In contrast to analogous reactions catalyzed by air- and moisture-sensitive borane catalysts, the hemiboronic acid catalyzed protocol can be performed under ambient conditions. Profiling studies revealed that global reduction proceeds via a rapid initial 1,4-addition, followed by ketone deoxygenation with a rate that is highly silane-dependent.
Key words
boronic acid catalysis -
hemiboronic acids -
reduction -
deoxygenation -
silanes
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720074.
Supporting Information
Publication History
Received: 17 April 2023
Accepted after revision: 16 May 2023
Article published online: 23 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1
Shenvi RA,
O’Malley DP,
Baran PS.
Acc. Chem. Res. 2009; 42: 530
2
Clarke JJ,
Basemann K,
Romano N,
Lee SJ,
Gagné MR.
Org. Lett. 2022; 24: 4135
3
Black WC,
Bayly C,
Belley M,
Chan C.-C,
Charleson S,
Denis D,
Gauthier JY,
Gordon R,
Guay D,
Kargman S,
Lau CK,
Leblanc Y,
Mancini J,
Ouellet M,
Percival D,
Roy P,
Skorey K,
Tagari P,
Vickers P,
Wong E,
Xu L,
Prasit P.
Bioorg. Med. Chem. Lett. 1996; 6: 725
4
Cheenpracha S,
Karalai C,
Ponglimanont C,
Subhadhirasakul S,
Tewtrakul S.
Bioorg. Med. Chem. 2006; 14: 1710
5
Puchalska P,
Crawford PA.
Cell Metab. 2017; 25: 262
6
Foley DJ,
Waldmann H.
Chem. Soc. Rev. 2022; 51: 4094
7
Nagai Y.
Org. Prep. Proced. Int. 1980; 12: 13
8
Larson GL,
Fry JL.
Org. React. (N. Y.) 2008; 71: 1
9
Rendler S,
Oestreich M.
Angew. Chem. Int. Ed. 2007; 46: 498
10
Larson GL,
Liberatore RJ.
Org. Process Res. Dev. 2021; 25: 1719
11
Deutsch C,
Krause N,
Lipshutz BH.
Chem. Rev. 2008; 108: 2916
12
Lipshutz BH,
Chrisman W,
Noson K,
Papa P,
Sclafani JA,
Vivian RW,
Keith JW.
Tetrahedron 2000; 56: 2779
13
Jurkauskas V,
Sadighi JP,
Buchwald SL.
Org. Lett. 2003; 5: 2417
14
Lipshutz BH,
Servesko JM.
Angew. Chem. Int. Ed. 2003; 42: 4789
15
Rainka MP,
Aye Y,
Buchwald SL.
Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5821
16
Otsuka H,
Shirakawa E,
Hayashi T.
Chem. Commun. 2007; 1819
17
Keinan E,
Greenspoon N.
J. Am. Chem. Soc. 1986; 108: 7314
18
Sumida Y,
Yorimitsu H,
Oshima K.
J. Org. Chem. 2009; 74: 7986
19
Keinan E,
Perez D.
J. Org. Chem. 1987; 52: 2576
20
Magnus P,
Waring MJ,
Scott DA.
Tetrahedron Lett. 2000; 41: 9731
21
Ojima I,
Kogure T.
Organometallics 1982; 1: 1390
22
Kanazawa Y,
Tsuchiya Y,
Kobayashi K,
Shiomi T,
Itoh J.-i,
Kukuchi M,
Yamamoto T,
Nishiyama H.
Chem. Eur. J. 2006; 12: 63
23
Miller SP,
Morken JP.
Org. Lett. 2002; 4: 2743
24
Fang H,
Oestreich M.
Chem. Sci. 2020; 11: 12604
25
Parks DJ,
Piers WE.
J. Am. Chem. Soc. 1996; 118: 9440
26
Mahdi T,
Stephan DW.
Angew. Chem. Int. Ed. 2015; 54: 8511
27
Chandrasekhar S,
Reddy CR,
Babu BN.
J. Org. Chem. 2002; 67: 9080
28
Bajracharya GB,
Nogami T,
Jin T,
Matsuda K,
Gevorgyan V,
Yamamoto Y.
Synthesis 2004; 308
29
Chadwick RC,
Kardelis V,
Lim P,
Adronov A.
J. Org. Chem. 2014; 79: 7728
30
Greb L,
Oña-Burgos P,
Kubas A,
Falk FC,
Breher F,
Fink K,
Paradies J.
Dalton Trans. 2012; 41: 9056
31
Kim Y,
Chang S.
Angew. Chem. Int. Ed. 2016; 55: 218
32
Ren X,
Han C,
Feng X,
Du H.
Synlett 2017; 28: 2421
33
Zhan X.-Y,
Zhang H,
Dong Y,
Yang J,
He S,
Shi Z.-C,
Tang L,
Wang J.-Y.
J. Org. Chem. 2020; 85: 6578
34
Nicholson K,
Langer T,
Thomas SP.
Org. Lett. 2021; 23: 2498
35
Li Y,
de la Torre JA. M,
Grabow K,
Bentrup U,
Junge K,
Zhou S,
Brückner A,
Beller M.
Angew. Chem. Int. Ed. 2013; 52: 11577
36
Hall DG.
Chem. Soc. Rev. 2019; 48: 3475
37
Rygus JP. G,
Hall DG.
Nat. Commun. 2023; 14: 2563
38
Zhuang C,
Zhang W,
Sheng C,
Zhang W,
Xing C,
Miao Z.
Chem. Rev. 2017; 117: 7762
39
Pesti J,
Larson GL.
Org. Process Res. Dev. 2016; 20: 1164
40
Pérez JM,
Maquilón C,
Ramón DJ,
Baeza A.
Asian J. Org. Chem. 2017; 6: 1440
41a
4-(3-Phenylpropanoyl)phenyl acrylate (3h); Typical Procedure
Under air, a vial was charged with enone 2h (111 mg, 0.400 mmol), catalyst 1 (4.0 mg, 0.020 mmol, 5 mol%), Et3 SiH (80 μL, 0.50 mmol, 1.25 equiv), and HFIP (1.6 mL). The mixture was stirred at rt for 24 h, then concentrated by rotary evaporation. Purification by column chromatography [silica gel, hexane–EtOAc (gradient 30:1 to 20:1)] gave a viscous oil; yield: 92 mg (83%).
FTIR (microscope): 3063 (w), 3028 (w), 2927 (w), 1743 (m), 1686 (m), 1599 (m), 1405 (m), 1204 (s), 1146 (s), 980 (m), 799 (w), 750 (w) cm–1 . 1 H NMR (500 MHz, CDCl3 ): δ = 8.03 (d, J = 8.8 Hz, 2 H), 7.33–7.30 (m, 2 H), 7.27–7.21 (m, 5 H), 6.65 (dd, J = 17.4, 1.3 Hz, 1 H). 6.34 (dd, J = 17.4, 10.5 Hz, 1 H), 6.07 (dd, J = 10.4, 1.2 Hz, 1 H). 3.31 (t, J = 7.8 Hz, 2 H), 3.09 (t, J = 7.7 Hz, 2 H). 13 C NMR (126 MHz, CDCl3 ): δ = 198.1, 164.1, 154.4, 141.3, 134.6, 133.4, 129.8, 128.7, 128.6, 127.7, 126.3, 121.9, 40.6, 30.2. HRMS (ESI): m/z [M + Na]+ calcd for C18 H16 NaO3 : 303.0992; found: 303.0993.