Synlett 2023; 34(05): 441-444 DOI: 10.1055/s-0041-1738432
cluster
Special Edition Thieme Chemistry Journals Awardees 2022
Concise Synthesis of 1,4-Dideoxy-1,4-imino-l -arabinitol (LAB) from d -Xylose by Intramolecular Stereospecific Substitution of a Hydroxy Group
Sunisa Akkarasamiyo∗
a
Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance (AMR), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
,
Hatairat Promsaka Na Sakonnakhon
a
Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance (AMR), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
,
Punlop Kuntiyong
b
Department of Chemistry, Faculty of Science, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000, Thailand
,
Poonsakdi Ploypradith
c
Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
d
Program in Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
,
Joseph S. M. Samec
e
Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
› Institutsangaben S.A. thanks the Department of Chemistry for Chemistry Research Credit (CRC), the Faculty of Science, Kasetsart University for the Pre-Proposal Research Fund (PRF) and the Undergraduate Research Matching Fund (URMF), and Kasetsart University Research and Development Institute (KURDI) for the financial support [FF(KU8.65)]. J.S. thanks the Swedish Research Councils FORMAS and VETENSKAPSRÅDET.
Abstract
We report a concise and green total synthesis of 1,4-dideoxy-1,4-imino-l -arabinitol hydrochloride from naturally occurring d- xylose. The key step involves a stereospecific substitution of a hydroxy group, without prior derivatization, in which the only byproduct is water. This opens up a novel benign route to iminosugar derivatives with diverse biological activities.
Key words
dideoxyiminoarabitinol -
imino sugars -
nucleophilic substitution -
phosphinic acid -
alcohols
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738432.
Supporting Information
Publikationsverlauf
Eingereicht: 29. November 2022
Angenommen nach Revision: 18. Januar 2023
Artikel online veröffentlicht: 15. Februar 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Dirir AM,
Daou M,
Yousef AF,
Yousef LF.
Phytochem. Rev. 2022; 21: 1049
1b
Papoutsis K,
Zhang J,
Bowyer MC,
Brunton N,
Gibney ER,
Lyng J.
Food Chem. 2021; 338: 128119
2
Kong W,
Lu C,
Ding Y,
Meng Y.
Eur. J. Pharmacol. 2022; 926: 175023
3a
Radulescu D,
Crisan D,
Militaru V,
Buzdugan E,
Stoicescu L,
Grosu A,
Vlad C,
Grapa C,
Radulescu ML.
J. Gastrointestin. Liver Dis. 2022; 31: 98
3b
Lenders M,
Brand E.
Drugs 2021; 81: 635
4a
Welter A,
Jadot J,
Dardenne G,
Marlier M,
Casimir J.
Phytochemistry 1976; 15: 747
4b
Evans SV,
Fellows LE,
Shing TK. M,
Fleet GW. J.
Phytochemistry 1985; 24: 1953
5a
Nash RJ,
Bell EA,
Williams JM.
Phytochemistry 1985; 24: 1620
5b
Fleet GW. J,
Nicholas SJ,
Smith PW,
Evans SV,
Fellows LE,
Nash RJ.
Tetrahedron Lett. 1985; 26: 3127
6a
Concia AL,
Gómez L,
Bujons J,
Parella T,
Vilaplana C,
Cardona PJ,
Joglara J,
Clapés P.
Org. Biomol. Chem. 2013; 11: 2005
6b
da Cruz FP,
Newberry S,
Jenkinson SF,
Wormald MR,
Butters TD,
Alonzi DS,
Nakagawa S,
Becq F,
Norez C,
Nash RJ,
Kato A,
Fleet GW. J.
Tetrahedron Lett. 2011; 52: 219
7a
Huang Y,
Dalton DR,
Carroll PJ.
J. Org. Chem. 1997; 62: 372
7b
Espelt L,
Parella T,
Bujons J,
Solans C,
Joglar J,
Delgado A,
Clapés P.
Chem. Eur. J. 2003; 9: 4887
7c
Kim J.-Y,
Mu Y,
Jin X,
Park S.-H,
Pham V.-T,
Song D,
Lee K.-Y,
Ham W.-H.
Tetrahedron 2011; 67: 9426
7d
Chang Y.-F,
Guo C.-W,
Chan T.-H,
Pan Y.-W,
Tsou E.-L,
Cheng W.-C.
Mol. Diversity 2011; 15: 203
7e
Ansaria AA,
Vankar YD.
RSC Adv. 2014; 4: 12555
7f
Jaszczyk J,
Li S,
Cocaud C,
Nicolas C,
Martin OR.
Carbohydr. Res. 2019; 486: 107855
7g
De Angelis M,
Primitivo L,
Lucarini C,
Agostinelli S,
Sappino C,
Ricelli A,
Righi G.
Carbohydr. Res. 2020; 492: 108028
7h
Syal K,
Maiti K,
Naresh K,
Avaji PG,
Chatterji D,
Jayaraman N.
Glycoconjugate J. 2016; 33: 763
8a
Fleet GW. J,
Smith PW.
Tetrahedron 1986; 42: 5685
8b
Kim YJ,
Kido M,
Bando M,
Kitahara T.
Tetrahedron 1997; 53: 7501
8c
Lombardo M,
Fabbroni S,
Trombini C.
J. Org. Chem. 2001; 66: 1264
8d
Dhavale DD,
Kumar KS. A,
Chaudhari VD,
Sharma T,
Sabharwal SG,
PrakashaReddy J.
Org. Biomol. Chem. 2005; 3: 3720
8e
Zhou X,
Liu W.-J,
Ye J.-L,
Huang P.-Q.
Tetrahedron 2007; 63: 6346
8f
Upadhyay PK,
Kumar P.
Synthesis 2010; 3063
8g
Choi HG,
Park D.-S,
Lee WK,
Sim T.
Tetrahedron Lett. 2013; 54: 5775
8h
Glawar AF. G,
Martínez RF,
Ayers BJ,
Hollas MA,
Ngo N,
Nakagawa S,
Kato A,
Butters TD,
Fleet GW. J,
Jenkinson SF.
Org. Biomol. Chem. 2016; 14: 10371
8i
de Silva EC,
Yamakawa NC. G,
Dos Santos AA,
Coelho F.
Synthesis 2017; 49: 4869
9
Akkarasamiyo S,
Sawadjoon S,
Orthaber A,
Samec JS. M.
Chem. Eur. J. 2018; 24: 3488
10
Watile RA,
Bunrit A,
Margalef J,
Akkarasamiyo S,
Ayub R,
Lagerspets E,
Biswas S,
Repo T,
Samec JS. M.
Nat. Commun. 2019; 10: 3826
11a
Bunrit A,
Dahlstrand C,
Olsson SK,
Srifa P,
Huang G,
Orthaber A,
Sjöberg PJ. R,
Biswas S,
Himo F,
Samec JS. M.
J. Am. Chem. Soc. 2015; 137: 4646
11b
Bunrit A,
Srifa P,
Rukkijakan T,
Dahlstrand C,
Huang G,
Biswas S,
Watile RA,
Samec JS. M.
ACS Catal. 2020; 10: 1344
12
2,3,5-Tri-O -benzyl-1-deoxy-1-[(4-methoxyphenyl)amino]-d -xylitol (12)
4-Methoxyaniline (325 mg, 2.65 mmol) and AcOH (2 drops) were added to a stirred solution of 11 (742 mg, 1.77 mmol) in EtOH (15 mL), and the mixture was heated at 70 °C for 30 min. A solution of NaBH3 CN (222 mg, 3.53 mmol) in EtOH (5 mL) was added, and the mixture was heated at 70 °C for a further 3 h, then cooled to rt. Brine was added and the resulting mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (Na2 SO4 ), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:2)] to give a brown oil; yield: 705 mg (75%), [α]D
28 –11.6 (c 0.47, CH2 Cl2 ).
1 H NMR (400 MHz, CDCl3 ): δ = 7.44–7.24 (m, 15 H, ArH), 6.85–6.80 (m, 2 H, PMP-ArH), 6.66–6.59 (m, 2 H, PMP-ArH), 4.81–4.46 (m, 6 H, OCH2 Ph), 4.10 (td, J = 6.2, 2.3 Hz, 1 H, H-4), 3.95 (q, J = 5.1 Hz, 1 H, H-2), 3.90–3.77 (m, 1 H, H-3), 3.80 (s, 3 H, OCH3 ), 3.64–3.49 (m, 2 H, H-5), 3.37 (qd, J = 12.8, 4.8 Hz, 2 H, H-1). 13 C NMR (100 MHz, CDCl3 ): δ = 152.7 (Ar), 141.9 (Ar), 138.1 (3) (Ar), 128.6 (ArH), 128.5 (3) (ArH), 128.1 (ArH), 128.0 (2) (ArH), 127.9 (ArH), 127.8 (ArH), 115.2 (ArH), 114.9 (ArH), 77.7 (C-3), 77.6 (C-2), 74.4 (OCH2 Ph), 73.3 (OCH2 Ph), 72.7 (OCH2 Ph), 71.3 (C-5), 68.9 (C-4), 55.8 (OCH3 ), 44.7 (C-1). HRMS (ESI): m /z [M + H]+ calcd for C33 H38 NO5 : 528.2744; found: 528.2777; [M + Na]+ calcd for C33 H37 NNaO5 : 550.2564; found: 550.2557.
(2R ,3S ,4S )-3,4-Bis(benzyloxy)-2-[(benzyloxy)methyl]-1-(4-methoxyphenyl)pyrrolidine (13)
A 50 wt.% solution of H3 PO2 in H2 O (13 μL, 0.1 mmol) was added to a stirred solution of amino alcohol 12 (532 mg, 1 mmol) in toluene (5 mL), and the mixture was refluxed for 15 h. When the reaction was complete (TLC), the mixture was cooled to rt and sat. aq NaHCO3 was added to neutralize the acid. The mixture was then extracted with EtOAc (3 × 10 mL), and the combined organic layers were washed with brine, dried (Na2 SO4 ), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:10)] to give a colorless oil; yield: 379 mg (74%); [α]D
28 +59.8 (c 0.47, CH2 Cl2 ).
1 H NMR (400 MHz, CDCl3 ): δ = 7.41–7.21 (m, 15 H, ArH), 6.86 (d, J = 8.9 Hz, 2 H, PMP-ArH), 6.61 (d, J = 8.9 Hz, 2 H, PMP-ArH), 4.72–4.45 (m, 6 H, OCH2 Ph), 4.25 (s, 1 H, H-3), 4.15 (d, J = 4.8 Hz, 1 H, H-2), 3.94 (dd, J = 9.8, 3.8 Hz, 1 H, H-4), 3.79 (s, 3 H, OCH3 ), 3.76 (dd, J = 9.5, 3.8 Hz, H-5), 3.63–3.54 (m, 2 H, H-5 and H-1), 3.50 (dd, J = 10.3, 4.9 Hz, 1 H, H-1). 13 C NMR (100 MHz, CDCl3 ): δ = 151.5 (Ar), 142.4 (Ar), 138.4 (Ar), 138.2 (Ar), 138.0 (Ar), 128.6 (ArH), 128.5 (2) (ArH), 127.9 (ArH), 127.8 (3) (ArH), 127.7 (2), 115.0 (ArH), 113.2 (ArH), 83.2 (C-3), 81.6 (C-2), 73.3 (OCH2 Ph), 71.3 (OCH2 Ph), 71.0 (OCH2 Ph), 68.6 (C-5), 64.7 (C-4), 55.9 (OCH3 ), 53.7 (C-1). HRMS (ESI): m /z [M + H]+ calcd for C33 H36 NO4 : 510.2663; found: 510.2639; [M + Na]+ calcd for C33 H35 NNaO4 : 532.2458; found: 532.2471.