Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(05): 441-444
DOI: 10.1055/s-0041-1738432
DOI: 10.1055/s-0041-1738432
cluster
Special Edition Thieme Chemistry Journals Awardees 2022
Concise Synthesis of 1,4-Dideoxy-1,4-imino-l-arabinitol (LAB) from d-Xylose by Intramolecular Stereospecific Substitution of a Hydroxy Group
S.A. thanks the Department of Chemistry for Chemistry Research Credit (CRC), the Faculty of Science, Kasetsart University for the Pre-Proposal Research Fund (PRF) and the Undergraduate Research Matching Fund (URMF), and Kasetsart University Research and Development Institute (KURDI) for the financial support [FF(KU8.65)]. J.S. thanks the Swedish Research Councils FORMAS and VETENSKAPSRÅDET.
Abstract
We report a concise and green total synthesis of 1,4-dideoxy-1,4-imino-l-arabinitol hydrochloride from naturally occurring d-xylose. The key step involves a stereospecific substitution of a hydroxy group, without prior derivatization, in which the only byproduct is water. This opens up a novel benign route to iminosugar derivatives with diverse biological activities.
Key words
dideoxyiminoarabitinol - imino sugars - nucleophilic substitution - phosphinic acid - alcoholsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738432.
- Supporting Information
Publication History
Received: 29 November 2022
Accepted after revision: 18 January 2023
Article published online:
15 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Dirir AM, Daou M, Yousef AF, Yousef LF. Phytochem. Rev. 2022; 21: 1049
- 1b Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Food Chem. 2021; 338: 128119
- 2 Kong W, Lu C, Ding Y, Meng Y. Eur. J. Pharmacol. 2022; 926: 175023
- 3a Radulescu D, Crisan D, Militaru V, Buzdugan E, Stoicescu L, Grosu A, Vlad C, Grapa C, Radulescu ML. J. Gastrointestin. Liver Dis. 2022; 31: 98
- 3b Lenders M, Brand E. Drugs 2021; 81: 635
- 4a Welter A, Jadot J, Dardenne G, Marlier M, Casimir J. Phytochemistry 1976; 15: 747
- 4b Evans SV, Fellows LE, Shing TK. M, Fleet GW. J. Phytochemistry 1985; 24: 1953
- 5a Nash RJ, Bell EA, Williams JM. Phytochemistry 1985; 24: 1620
- 5b Fleet GW. J, Nicholas SJ, Smith PW, Evans SV, Fellows LE, Nash RJ. Tetrahedron Lett. 1985; 26: 3127
- 6a Concia AL, Gómez L, Bujons J, Parella T, Vilaplana C, Cardona PJ, Joglara J, Clapés P. Org. Biomol. Chem. 2013; 11: 2005
- 6b da Cruz FP, Newberry S, Jenkinson SF, Wormald MR, Butters TD, Alonzi DS, Nakagawa S, Becq F, Norez C, Nash RJ, Kato A, Fleet GW. J. Tetrahedron Lett. 2011; 52: 219
- 7a Huang Y, Dalton DR, Carroll PJ. J. Org. Chem. 1997; 62: 372
- 7b Espelt L, Parella T, Bujons J, Solans C, Joglar J, Delgado A, Clapés P. Chem. Eur. J. 2003; 9: 4887
- 7c Kim J.-Y, Mu Y, Jin X, Park S.-H, Pham V.-T, Song D, Lee K.-Y, Ham W.-H. Tetrahedron 2011; 67: 9426
- 7d Chang Y.-F, Guo C.-W, Chan T.-H, Pan Y.-W, Tsou E.-L, Cheng W.-C. Mol. Diversity 2011; 15: 203
- 7e Ansaria AA, Vankar YD. RSC Adv. 2014; 4: 12555
- 7f Jaszczyk J, Li S, Cocaud C, Nicolas C, Martin OR. Carbohydr. Res. 2019; 486: 107855
- 7g De Angelis M, Primitivo L, Lucarini C, Agostinelli S, Sappino C, Ricelli A, Righi G. Carbohydr. Res. 2020; 492: 108028
- 7h Syal K, Maiti K, Naresh K, Avaji PG, Chatterji D, Jayaraman N. Glycoconjugate J. 2016; 33: 763
- 8a Fleet GW. J, Smith PW. Tetrahedron 1986; 42: 5685
- 8b Kim YJ, Kido M, Bando M, Kitahara T. Tetrahedron 1997; 53: 7501
- 8c Lombardo M, Fabbroni S, Trombini C. J. Org. Chem. 2001; 66: 1264
- 8d Dhavale DD, Kumar KS. A, Chaudhari VD, Sharma T, Sabharwal SG, PrakashaReddy J. Org. Biomol. Chem. 2005; 3: 3720
- 8e Zhou X, Liu W.-J, Ye J.-L, Huang P.-Q. Tetrahedron 2007; 63: 6346
- 8f Upadhyay PK, Kumar P. Synthesis 2010; 3063
- 8g Choi HG, Park D.-S, Lee WK, Sim T. Tetrahedron Lett. 2013; 54: 5775
- 8h Glawar AF. G, Martínez RF, Ayers BJ, Hollas MA, Ngo N, Nakagawa S, Kato A, Butters TD, Fleet GW. J, Jenkinson SF. Org. Biomol. Chem. 2016; 14: 10371
- 8i de Silva EC, Yamakawa NC. G, Dos Santos AA, Coelho F. Synthesis 2017; 49: 4869
- 9 Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JS. M. Chem. Eur. J. 2018; 24: 3488
- 10 Watile RA, Bunrit A, Margalef J, Akkarasamiyo S, Ayub R, Lagerspets E, Biswas S, Repo T, Samec JS. M. Nat. Commun. 2019; 10: 3826
- 11a Bunrit A, Dahlstrand C, Olsson SK, Srifa P, Huang G, Orthaber A, Sjöberg PJ. R, Biswas S, Himo F, Samec JS. M. J. Am. Chem. Soc. 2015; 137: 4646
- 11b Bunrit A, Srifa P, Rukkijakan T, Dahlstrand C, Huang G, Biswas S, Watile RA, Samec JS. M. ACS Catal. 2020; 10: 1344
- 12 2,3,5-Tri-O-benzyl-1-deoxy-1-[(4-methoxyphenyl)amino]-d-xylitol (12) 4-Methoxyaniline (325 mg, 2.65 mmol) and AcOH (2 drops) were added to a stirred solution of 11 (742 mg, 1.77 mmol) in EtOH (15 mL), and the mixture was heated at 70 °C for 30 min. A solution of NaBH3CN (222 mg, 3.53 mmol) in EtOH (5 mL) was added, and the mixture was heated at 70 °C for a further 3 h, then cooled to rt. Brine was added and the resulting mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:2)] to give a brown oil; yield: 705 mg (75%), [α]D 28 –11.6 (c 0.47, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.44–7.24 (m, 15 H, ArH), 6.85–6.80 (m, 2 H, PMP-ArH), 6.66–6.59 (m, 2 H, PMP-ArH), 4.81–4.46 (m, 6 H, OCH2Ph), 4.10 (td, J = 6.2, 2.3 Hz, 1 H, H-4), 3.95 (q, J = 5.1 Hz, 1 H, H-2), 3.90–3.77 (m, 1 H, H-3), 3.80 (s, 3 H, OCH3), 3.64–3.49 (m, 2 H, H-5), 3.37 (qd, J = 12.8, 4.8 Hz, 2 H, H-1). 13C NMR (100 MHz, CDCl3): δ = 152.7 (Ar), 141.9 (Ar), 138.1 (3) (Ar), 128.6 (ArH), 128.5 (3) (ArH), 128.1 (ArH), 128.0 (2) (ArH), 127.9 (ArH), 127.8 (ArH), 115.2 (ArH), 114.9 (ArH), 77.7 (C-3), 77.6 (C-2), 74.4 (OCH2Ph), 73.3 (OCH2Ph), 72.7 (OCH2Ph), 71.3 (C-5), 68.9 (C-4), 55.8 (OCH3), 44.7 (C-1). HRMS (ESI): m/z [M + H]+ calcd for C33H38NO5: 528.2744; found: 528.2777; [M + Na]+ calcd for C33H37NNaO5: 550.2564; found: 550.2557. (2R,3S,4S)-3,4-Bis(benzyloxy)-2-[(benzyloxy)methyl]-1-(4-methoxyphenyl)pyrrolidine (13) A 50 wt.% solution of H3PO2 in H2O (13 μL, 0.1 mmol) was added to a stirred solution of amino alcohol 12 (532 mg, 1 mmol) in toluene (5 mL), and the mixture was refluxed for 15 h. When the reaction was complete (TLC), the mixture was cooled to rt and sat. aq NaHCO3 was added to neutralize the acid. The mixture was then extracted with EtOAc (3 × 10 mL), and the combined organic layers were washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:10)] to give a colorless oil; yield: 379 mg (74%); [α]D 28 +59.8 (c 0.47, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.41–7.21 (m, 15 H, ArH), 6.86 (d, J = 8.9 Hz, 2 H, PMP-ArH), 6.61 (d, J = 8.9 Hz, 2 H, PMP-ArH), 4.72–4.45 (m, 6 H, OCH2Ph), 4.25 (s, 1 H, H-3), 4.15 (d, J = 4.8 Hz, 1 H, H-2), 3.94 (dd, J = 9.8, 3.8 Hz, 1 H, H-4), 3.79 (s, 3 H, OCH3), 3.76 (dd, J = 9.5, 3.8 Hz, H-5), 3.63–3.54 (m, 2 H, H-5 and H-1), 3.50 (dd, J = 10.3, 4.9 Hz, 1 H, H-1). 13C NMR (100 MHz, CDCl3): δ = 151.5 (Ar), 142.4 (Ar), 138.4 (Ar), 138.2 (Ar), 138.0 (Ar), 128.6 (ArH), 128.5 (2) (ArH), 127.9 (ArH), 127.8 (3) (ArH), 127.7 (2), 115.0 (ArH), 113.2 (ArH), 83.2 (C-3), 81.6 (C-2), 73.3 (OCH2Ph), 71.3 (OCH2Ph), 71.0 (OCH2Ph), 68.6 (C-5), 64.7 (C-4), 55.9 (OCH3), 53.7 (C-1). HRMS (ESI): m/z [M + H]+ calcd for C33H36NO4: 510.2663; found: 510.2639; [M + Na]+ calcd for C33H35NNaO4: 532.2458; found: 532.2471.