Ultraschall Med 2016; 37(03): 229-232
DOI: 10.1055/s-0042-107411
Editorial
© Georg Thieme Verlag KG Stuttgart · New York

A Milestone: Approval of CEUS for Diagnostic Liver Imaging in Adults and Children in the USA

Ein Meilenstein: Zulassung von CEUS zur Leberdiagnostik an Erwachsenen und Kindern in den USA
K. Seitz
,
D. Strobel
Further Information

Publication History

Publication Date:
08 June 2016 (online)

The approval of microbubbles with the inert gas sulfur hexafluoride (SF6) and a palmitic acid shell (SonoVue®, Bracco Geneva, CH) for the diagnostic imaging of liver tumors in adults and children by the FDA in the United States represents a milestone for contrast-enhanced ultrasound (CEUS).

This warrants a look back at the history of the development of CEUS. The first publications based on echocardiographic observations of right ventricular contrast phenomena caused by tiny air bubbles following i. v. injection of indocyanine green appeared around 1970 [1] [2] [3]. A longer period of sporadic publications but no real progress then followed since, in contrast to X-ray methods, ultrasound works quite well without a contrast agent.

It is noteworthy that the foundations for further development were primarily laid in Europe. The development and approval (1991) of the contrast agent Echovist® by a German contrast manufacturer for echocardiography unsuitable for passing through lungcapillaries [4] [5] resulted in the first extracardiac indications, e. g. for detecting retrovesical reflux and tubal patency, in the mid-1980 s [6] [7] [8]. The sensitivity of color Doppler was not able to compensate for the lack of an ultrasound contrast agent compared to CT with its obligatory contrast administration.

Studies of SHU 508 – microbubbles of air moderately stabilized with galactose and palmitic acid – began in 1990 [9] [10] [11] [12] [13] [14] [15] and the contrast agent was then introduced in 1995 in Germany as Levovist®. The most important publications by Blomley, Cosgrove, Leen, and Albrecht are named here on a representative basis [16] [17] [18] [19] [20].

SHU 508 along with other US contrast agents provided impressive proof of the superiority of CEUS for the diagnosis of liver metastases. However, practical application remained complicated and required skill and technical know-how because of a lack of suitable software on US units [21] [22] [23] [24] [25]. The monograph regarding the use of contrast agent in the liver by Wermke and Gaßmann is impressive but unfortunately only available in German [26]. In addition to being applied in the heart and the liver, CEUS was first used in transcranial applications [27] and in vessels [28], the kidneys [29], and the breast [30]. Measurements at transit times were also of particular interest [31]. It was difficult to convince ultrasound device manufacturers of the need to adapt US units to US contrast agents and not vice versa.

The breakthrough came with low MI phase contrast inversion and the introduction of SonoVue® in many European countries in 2001. This more stable US contrast agent is easy to use and is becoming indispensable in diagnostic imaging of the liver [32] [33] [34] [35] [36] [37] [38] [39] [40]. Studies have shown its excellent tolerability [41] and diagnostic reliability comparable to that of MDCT and MRI in the liver [42] [43]. Today it would be unimaginable to diagnose liver tumors without CEUS [44]. This also applies to very small lesions [45] [46].

EFSUMB published the first CEUS guidelines in 2004 [47] which have since been reissued and divided into hepatic [48] and extrahepatic applications [49]. The first recommendations regarding quantitative assessment have also been published [50].

The increasing scientific interest in CEUS is evident based on the greater number of PubMed hits for Echovist® (ca. 130), Levovist® (ca. 500) and SonoVue® (ca. 1500) as well as on the fact that publications regarding CEUS comprise almost 20 % of UiM/EJU articles in the last 10 years. The number of CEUS articles in UiM/EJU continues to be high [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75].

In the clinical reality, CEUS has been able to become established alongside CT and MRI according to the saying “better is the enemy of good” [76] as the method of choice after B-mode ultrasound in the evaluation of liver tumor malignancy in Germany, where the technically challenging method is promoted. In the case of unclear CT and MRI findings, CEUS performed by an experienced examiner/clinician often provides the solution, particularly in the case of small lesions, and is the last resort before US-guided biopsy [45] [46]. However, there is a lack of competent CEUS examiners and Germany continues to be the world champion of X-ray examinations with no noticeable reverse trend. In almost every doctor’s office and hospital, ultrasound costs are by far not fully covered, resulting in an extremely high frequency of CT use with CT being available to everyone regardless of insurance status.

The USA is now in the starting position for CEUS. It will be exciting to see how the method will develop there. The FDA’s decision to approve sulfur hexafluoride (Lumason® = SonoVue®) should be considered against the background of the radiation exposure caused by CT examinations and the fact that MRI using gadolinium-containing contrast agents is no longer considered noninvasive because of nephrogenic systemic fibrosis (NSF) and the accumulation of the agent in the cerebrum. An essential point of the campaign regarding the avoidance of diagnostic radiation exposure triggered in the USA by the publications of Brenner et al. [77] [78] was that the agent was approved for use in the liver even for children [79] [80] – still off label in Europe – without additional comprehensive studies due to the available scientific results and the very low side effects profile of Lumason® (= SonoVue®). It is admittedly unclear why other indications (except the heart which has been approved since 2014) are excluded even though the microbubbles as a pure blood pool contrast agent can be diagnostically used in the entire vascular system and bed of all organs. To our knowledge, there is no such restriction on the approval of X-ray contrast agents.

Like echocardiography and emergency ultrasound, CEUS began in Europe but will probably only establish its final diagnostic value as a “reimport”.

This is a major opportunity to permanently define the role of Ultrasound as a highly valuable, patient-centered imaging method in the German health care system.

This may prompt some of our international readers to reflect upon the role of CEUS in their own countries.

Die Zulassung von Mikrobläschen mit Schwefelhexafluorid (SF6), einem inerten Gas in Palmitinsäureschalen (SonoVue®, Bracco Genf, CH), zur Lebertumordiagnostik bei Erwachsenen und Kindern durch die FDA in den USA wird einen Meilenstein für die Kontrastmittelsonografie (CEUS) darstellen.

Ein Rückblick auf die Entwicklung der Kontrastmittelsonografie (CEUS) ist daher sinnvoll. Die ersten Veröffentlichungen erfolgten um 1970 nach echokardiografischen Beobachtungen von rechtsventrikulären Kontrastphänomenen nach i.-v. Indocyanigrüninjektionen, die aufgeschüttelten winzigen Luftblasen geschuldet waren [1] [2] [3]. Es folgte eine längere Phase von vereinzelten Publikationen ohne in der Sache so recht weiter zu kommen, Ultraschalldiagnostik funktionierte im Gegensatz zu den Röntgenverfahren auch ohne Kontrastmittel sehr gut.

Es ist bemerkenswert, dass die Grundlagen für die weitere Entwicklung überwiegend in Europa erarbeitet wurden. Mit der Entwicklung des nicht lungengängigen Kontrastmittels (Echovist®, Zulassung in Deutschland 1991), durch einen deutschen Kontrastmittelhersteller für die Echokardiografie [4] [5] ergaben sich ab Mitte der 80er-Jahre erste extrakardiale Indikationen [6] [7] [8], z. B. zum Nachweis des retrovesikalen Refluxes und der Tubendurchgängigkeit. Die Sensitivität des Farbdopplers vermochte das Fehlen eines Ultraschallkontrastmittels (USKM) gegenüber der übermächtigen CT mit obligatorischer KM-Gabe nicht zu kompensieren.

Die Anwendung von SHU 508 – bestehend aus mäßig mit Galactose und Palmitinsäure stabilisierten Mikrobläschen und „Berliner Luft“ im Innern – wurde ab 1990 untersucht [9] [10] [11] [12] [13] [14] [15] und 1995 als Levovist® in Deutschland eingeführt. Stellvertretend seien hier die wichtigsten Publikationen von Blomley, Cosgrove, Leen und Albrecht genannt [16] [17] [18] [19] [20].

Mit SHU 508 und auch mit anderen USKM wurde die Überlegenheit der CEUS in der Diagnostik von Lebermetastasen eindrucksvoll belegt, die praktische Anwendung war noch umständlich und erforderte Geschick und technisches Know-how, weil die US-Geräte über keine geeignet Software verfügten [21] [22] [23] [24] [25]. Eindrucksvoll und leider nur in deutscher Sprache verfügbar ist die Monografie zur Kontrastmittelanwendung an der Leber von Wermke und Gaßmann [26]. Außer an Herz und Leber erfolgten die ersten Anwendungen transkraniell [27], an Gefäßen[28], Nieren [29] und Mamma [30], besonderes Interesse fanden auch Messungen zu Transitzeiten [31]. Nur mühsam konnten die Hersteller von Ultraschallgeräten überzeugt werden, dass die US-Geräte an die USKM angepasst werden müssen und nicht umgekehrt.

Der Durchbruch kam 2001 mit der Low MI Phasenkontrastinversionstechnik und der Einführung von SonoVue® in vielen europäischen Ländern. Das stabilere USKM ist gut handhabbar und wird unverzichtbar in der Leberdiagnostik [32] [33] [34] [35] [36] [37] [38] [39] [40]. Studien haben die exzellente Verträglichkeit [41] ebenso wie vergleichbare diagnostische Zuverlässigkeit mit MDCT und MRI an der Leber belegt [42] [43]. Lebertumordiagnostik ohne CEUS ist nicht mehr vorstellbar [44] und das gilt auch für sehr kleine Läsionen [45] [46].

Bereits 2004 wurden von der EFSUMB die ersten Leitlinien zur CEUS publiziert [47] und mittlerweile erneut aufgelegt und wegen der wachsenden Zunahme in hepatische [48] und extrahepatische Anwendungen [49] getrennt. Weiter wurden erste Empfehlungen zur quantitativen Auswertung veröffentlicht [50].

Das steigende wissenschaftliche Interesse an CEUS lässt sich an der zunehmenden Frequenz der PubMed-Treffer für Echovist® (ca. 130), Levovist® (ca. 500) und SonoVue® (ca. 1500) erkennen, ebenso daran, dass in den letzten 10 Jahren Publikationen zum Thema CEUS fast 20 % der UiM/EJU ausmachten. Der Anteil der CEUS-Beiträge ist auch in letzter Zeit in der UiM/EJU unverändert hoch [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75].

Betrachtet man jedoch die klinische Realität, so konnte sich CEUS gemäß unserem Sprichwort „das Bessere ist der Feind des Guten“ [76] in Deutschland – dort wo die technische anspruchsvolle Methode gepflegt wird – auf Augenhöhe mit CT und MRT sich in der Dignitätsbeurteilung von Lebertumoren als Methode der ersten Wahl nach der B-Bild-Sonografie durchsetzen. Bei ungeklärten CT- und MRT–Befunden ist der CEUS in der Hand des erfahrenen Untersuchers/Kliniker oft der Problemlöser v. a. bei kleinen Läsionen und letzte Instanz vor der US-geführten Biopsie [45] [46]. Allerdings fehlt es der CEUS an einer flächendeckenden Versorgung mit kompetenten Untersuchern, und nach wie vor ist Deutschland Röntgenweltmeister ohne erkennbaren Trend zur Umkehr. Der Einsatz der Sonografie in nahezu jeder ärztlichen Praxis und Klinik erfolgt ohne kostendeckende Honorierung und sorgt allerdings für eine extrem hohe CT-Frequenz (“3 – 5 Sonografiker füttern ein CT“) bei ubiquitärer Verfügbarkeit eines CT für jedermann unabhängig vom Versicherungsstatus.

Jetzt ist USA in der Startposition für CEUS. Es wird spannend, welche Entwicklung die CEUS in USA nehmen wird. Die Entscheidung der FDA zur Zulassung von Schwefelhexafluorid (Lumason® = SonoVue®) ist sicherlich vor dem Hintergrund der Strahlenbelastung durch CT-Untersuchungen zu sehen und der Tatsache, dass das MRT mit der Anwendung von gadoliniumhaltigen KM nicht nur wegen der nephrogene systemische Fibrose (NSF), sondern auch wegen der Ablagerung im Cerebrum seine Unschuld hinsichtlich Noninvasivität verloren hat. Die von der Veröffentlichung von Brenner et al. [77] [78] in den USA ausgelöste Kampagne zur Vermeidung von diagnostischer Strahlenbelastung war wesentlich, dass aufgrund der vorliegenden wissenschaftlichen Ergebnisse bei einem extrem niedrige NW-Profil von SonoVue® selbst für Kinder [79] [80] – in Europa immer noch ein Off-lable-use – ohne weitere umfangreiche Studien an der Leber zugelassen wurde. Unlogisch bleibt freilich weshalb andere Indikationen (außer Herz, hier besteht in den USA eine Zulassung seit 2014) ausgenommen sind, wo sich die Mikrobläschen als reines Blood-pool-KM im gesamten Gefäßsystem und -bett aller Organe diagnostisch nutzen ließen. Eine solche Begrenzung der Zulassung existiert für Röntgen-KM u. W. nirgends.

Der CEUS hat, wie schon die Echokardiografie und die Notfallsonografie, ihren Ausgangspunkt in Europa genommen und wird vermutlich erneut, erst als „Reimport“ seinen endgültigen Stellenwert finden.

Dies ist eine weitere Riesenchance den hochqualifizierten Ultraschall in Deutschland als patientennahe Sonografie in unserem Gesundheitswesen adäquat zu verankern.

Ein jeder unserer internationalen Leser möge sich fragen, wie es in seinem Land um den CEUS bestellt ist.

 
  • Literatur

  • 1 Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: Contrast studies in Anatomy and Function. Radiology 1969; 92: 939-948
  • 2 Feigenbaum H, Stone JM, Lee DA et al. Identification of ultrasound echoes from the left ventricle by use of intracardiac injections of indocyanine green. Circulation 1970; 41: 615-621
  • 3 Gramiak R, Nanda NC, Shah PM. Echocardiographic detection of the pulmonary valve. Radiology 1972; 102: 153-157
  • 4 Schartl M, Fritzsch T, Friedmann W et al. Quantification of myocardial perfusion defects using 2-dimensional contrast echocardiography. Z Kardiol 1984; 73: 560-567
  • 5 Smith MD, Kwan OL, Reiser HJ et al. Superior intensity and reproducibility of SHU-454, a new right heart contrast agent. J Am Coll Cardiol 1984; 3: 992-998
  • 6 Meyer-Schwickerath M, Fritzsch T. Sonographic imaging of the kidney cavity system using a ultrasonic contrast medium. Ultraschall in Med 1986; 7: 34-36
  • 7 Deichert U, Schleif R, van de Sandt M et al. Transvaginal hysterosalpingo-contrast-sonography (Hy-Co-Sy) compared with conventional tubal diagnostics. Hum Reprod 1989; 4: 418-424
  • 8 Vorwerk D, Gehl HB, Schlief R et al. Dynamic contrast medium-aided ultrasound cavography in patients with a caval filter. Ultraschall in Med 1990; 11: 146-149
  • 9 Bleeker H, Shung K, Barnhart J. On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion. J Ultrasound Med 1990; 9: 461-471
  • 10 Fritzsch T, Hilmann J, Kämpfe M et al. SHU 508, a transpulmonary echocontrast agent: initial experience. Invest Radiol 1990; 25: S160-S161
  • 11 Fobbe F, Siegert J, Fritzsch T et al. Color-coded duplex sonography and ultrasound contrast media – detection of renal perfusion defects in experimental animals. Fortschr Röntgenstr 1991; 154: 242-245
  • 12 Schlief R. Ultrasound contrast agents. Curr Opin Radiol 1991; 3: 198-207
  • 13 Goldberg BB, Liu JB, Burns PN et al. Galactose-based intravenous sonographic contrast agent: experimental studies. J Ultrasound Med 1993; 12: 463-470
  • 14 Forsberg F, Liu JB, Burns PN et al. Artifacts in ultrasonic contrast agent studies. J Ultrasound Med 1994; 13: 357-365
  • 15 Fobbe F, Ohnesorge I, Reichel M et al. Color-coded duplex sonography and ultrasound contrast medium in the study of peripheral arteries – initial clinical experiences]. Ultraschall in Med 1992; 13: 193-198
  • 16 Cosgrove D. Ultrasound contrast enhancement of tumours. Clin Radiol 1996; 51: 44-49
  • 17 Leen E, McArdle CS. Ultrasound contrast agents in liver imaging. Clin Radiol 1996; 51: 35-39
  • 18 Blomley MJ, Albrecht T, Cosgrove DO et al. Liver vascular transit time analyzed with dynamic hepatic venography with bolus injections of an US contrast agent: early experience in seven patients with metastases. Radiology 1998; 209: 862-866 Erratum in: Radiology 1999;210:882
  • 19 Albrecht T, Urbank A, Mahler M et al. Prolongation and optimization of Doppler enhancement with a microbubble US contrast agent by using continuous infusion: preliminary experience. Radiology 1998; 207: 339-347
  • 20 Albrecht T, Hoffmann CW, Schettler S et al. B-mode enhancement at phase-inversion US with air-based microbubble contrast agent: initial experience in humans. Radiology 2000; 216: 273-278
  • 21 Blomley MJ, Albrecht T, Cosgrove DO et al. Improved imaging of liver metastases with stimulated acoustic emission in the late phase of enhancement with the US contrast agent SH U 508A: early experience. Radiology 1999; 210: 409-416
  • 22 Gebel M, Caselitz M, Bowen-Davies PE et al. A multicenter, prospective, open label, randomized, controlled phase IIIb study of SH U 508a (Levovist) for Doppler signal enhancement in the portal vascular system. Ultraschall in Med 1998; 19: 148-156
  • 23 Albrecht T, Hoffmann CW, Schmitz SA et al. Phase-Inversion Sonography During the Liver-Specific Late Phase of Contrast Enhancement: Improved Detection of Liver Metastases. Am J Roentgenol 2001; 176: 1191-1198
  • 24 von Herbay A, Vogt C, Häussinger D. Pulse Inversion Sonography in the Early Phase of the Sonographic Contrast Agent Levovist. J Ultrasound Med 2002; 21: 1191-1200
  • 25 Albrecht T, Blomley MJ, Burns PN et al. Improved detection of hepatic metastases with pulse-inversion US during the liver-specific phase of SHU 508A: multicenter study. Radiology 2003; 227: 361-370
  • 26 Wermke W, Gaßmann B. Tumordiagnostik der Leber mit Echosignalverstärker. Berlin, Heidelberg, New York: Springer Verlag; 1998. ISBN: 3-540-64482-2
  • 27 Rosenkranz K, Zendel W, Langer R et al. Contrast-enhanced transcranial Doppler US with a new transpulmonary echo contrast agent based on saccharide microparticles. Radiology 1993; 187: 439-443
  • 28 Schwarz KQ, Bezante GP, Becher H et al. Efficacy SH U 508 A (Levovist) as blood pool enhancer in the Doppler evaluation of multiple vascular regions. Radiol Med 1994; 87: 3-14
  • 29 Filippone A, Muzi M, Basilico R et al. Color Doppler flow imaging of renal disease. Value of a new intravenous contrast agent: SH U 508 A (Levovist). Radiol Med 1994; 87: 50-58
  • 30 Madjar H, Prömpeler H, Schürmann R et al. Improving diagnosis of blood supply of breast tumors by echo-contrast media. Geburtshilfe Frauenheilkd 1993; 53: 866-869
  • 31 Albrecht T, Blomley MJ, Cosgrove DO et al. Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet 1999; 8;353: 1579-1583
  • 32 Becker D. Contrast enhanced ultrasound in the liver using low mechanical index – what is the difference?. Ultraschall in Med 2002; 23: 397-402
  • 33 Bernatik T, Becker D, Neureiter D et al. Detection of liver metastases – comparison of contrast – enhanced ultrasound using first versus second generation contrast agents. Ultraschall in Med 2003; 24: 175-179
  • 34 Gaiani S, Celli N, Piscaglia F et al. Usefulness of contrast-enhanced perfusional sonography in the assessment of hepatocellular carcinoma hypervascular at spiral computed tomography. J Hepatol 2004; 41: 421-426
  • 35 Strobel D, Kleinecke C, Hänsler J et al. Contrast-enhanced sonography for the characterisation of hepatocellular carcinomas – correlation with histological differentiation. ltraschall in Med 2005; 26: 270-276
  • 36 Strobel D, Seitz K, Blank W et al. Contrast-enhanced ultrasound for the characterization of focal liver lesions--diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall in Med 2008; 29: 499-505
  • 37 Tranquart F, Correas JM, Ladam Marcus V et al. Real-time contrast-enhanced ultrasound in the evaluation of focal liver lesions: diagnostic efficacy and economical issues from a French multicentric study. J Radiol 2009; 90: 109-122
  • 38 Strobel D, Seitz K, Blank W et al. Tumor-specific vascularization pattern of liver metastasis, hepatocellular carcinoma, hemangioma and focal nodular hyperplasia in the differential diagnosis of 1349 liver lesions in contrast-enhanced ultrasound (CEUS). Ultraschall in Med 2009; 30: 376-382
  • 39 Piscaglia F, Venturi A, Mancini M et al. Diagnostic features of real-time contrast-enhanced ultrasound in focal nodular hyperplasia of the liver. Ultraschall in Med 2010; 31: 276-282
  • 40 Sporea I, Badea R, Popescu A et al. Contrast-Enhanced Ultrasound (CEUS) For The Evaluation Of Focal Liver Lesions – A Prospective Multicenter Study Of Its Usefulness In Clinical Practice. Ultraschall in Med 2014; 35: 259-266
  • 41 Piscaglia F, Bolondi L. Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 2006; 32: 1369-1375
  • 42 Seitz K, Strobel D, Bernatik T et al. Contrast-Enhanced Ultrasound (CEUS) for the characterization of focal liver lesions – prospective comparison in clinical practice: CEUS vs. CT (DEGUM multicenter trial). Ultraschall inMed 2009; 30: 383-389
  • 43 Seitz K, Bernatik T, Strobel D et al. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions in clinical practice (DEGUM Multicenter Trial): CEUS vs. MRI – a prospective comparison in 269 patients. Ultraschall inMed 2010; 31: 492-499
  • 44 Seitz K, Piscaglia F. Ultrasound: the only "one stop shop" for modern management of liver disease. Ultraschall inMed 2013; 34: 500-503
  • 45 Laghi F, Catalano O, Maresca M et al. Indeterminate, subcentimetric focal liver lesions in cancer patients: additional role of contrast-enhanced ultrasound. Ultraschall inMed 2010; 31: 283-288
  • 46 Strobel D, Bernatik T, Blank W et al. Diagnostic accuracy of CEUS in the differential diagnosis of small (≤ 20  mm) and subcentimetric (≤ 10  mm) focal liver lesions in comparison with histology. Results of the DEGUM multicenter trial. Ultraschall in Med 2011; 32: 593-597
  • 47 Albrecht T, Blomley M, Bolondi L et al. Guidelines for the use of contrast agents in ultrasound – January 2004. Ultraschall in Med 2004; 25: 249-256
  • 48 Claudon M, Dietrich CF, Choi BI et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall in Med 2013; 34: 11-29
  • 49 Piscaglia F, Nolsøe C, Dietrich CF et al. The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall in Med 2012; 33: 33-59
  • 50 Dietrich CF, Averkiou MA, Correas JM et al. An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall in Med 2012; 33: 344-351
  • 51 Wildner D, Pfeifer L, Goertz RS et al. Dynamic contrast-enhanced ultrasound (DCE-US) for the characterization of hepatocellular carcinoma and cholangiocellular carcinoma. Ultraschall in Med 2014; 35: 522-527
  • 52 Egger C, Goertz RS, Strobel D et al. Dynamic contrast-enhanced ultrasound (DCE-US) for easy and rapid evaluation of hepatocellular carcinoma compared to dynamic contrast-enhanced computed tomography (DCE-CT) – a pilot study. Ultraschall in Med 2012; 33: 587-592
  • 53 Drudi FM et al. CEUS Time Intensity Curves in the Differentiation Between Leydig Cell Carcinoma and Seminoma: A Multicenter Study. Ultraschall in Med 2016; 37: 201-205
  • 54 Zink F et al. Comparison of Two High-End Ultrasound Systems for Contrast-Enhanced Ultrasound Quantification of Mural Microvascularity in Crohn’s Disease – Vergleich von zwei HighEnd-Ultraschallsystemen zur Beurteilung der Mikrovaskularisation bei Morbus Crohn mittels quantitativer kontrastverstärkter Sonografie. Ultraschall in Med 2016; 37: 74-81
  • 55 Grabner A et al. Noninvasive Imaging of Acute Renal Allograft Rejection by Ultrasound Detection of Microbubbles Targetedto T-lymphocytes in Rats. Ultraschall in Med 2016; 37: 82-91
  • 56 Bernatik T, Schuler A, Kunze G et al. Benefit of Contrast-Enhanced Ultrasound (CEUS) in the Follow-Up Care of Patients with Colon Cancer: A Prospective Multicenter Study. Ultraschall in Med 2015; 36: 590-593
  • 57 Liu LN, Xu HX, Zheng SG et al. Ultrasound Findings of Intraductal Papillary Neoplasm in Bile Duct and the Added Value of Contrast-Enhanced Ultrasound – Ultraschallbefunde bei intraduktalen papillärer Neoplasien der Gallenwege und Zusatzwert der kontrastverstärkten Sonografie. Ultraschall in Med 2015; 36: 594-602
  • 58 Vetrano IG, Prada F, Erbetta A et al. Intraoperative Ultrasound and Contrast-Enhanced Ultrasound (CEUS) Features in a Case of Intradural Extramedullary Dorsal Schwannoma Mimicking an Intramedullary Lesion. Ultraschall in Med 2015; 36: 307-311
  • 59 Mauch M, Blank W, Kunze G et al. Importance of Abdominal Ultrasound in 17 Patients with Histologically Confirmed Autoimmune Pancreatitis (AIP). Ultraschall in Med 2015; 36: 248-354
  • 60 Wildner D, Bernatik T, Greis C et al. CEUS in Hepatocellular Carcinoma and Intrahepatic Cholangiocellular Carcinoma in 320 Patients – Early or Late Washout Matters: A Subanalysis of the DEGUM Multicenter Trial. Ultraschall in Med 2015; 36: 132-139
  • 61 van den Oord SCH, Akkus Z, Bosch JG et al. Quantitative Contrast-Enhanced Ultrasound of Intraplaque Neovascularization in Patients with Carotid Atherosclerosis. Ultraschall in Med 2015; 36: 154-161
  • 62 Donadon M, Costa G, Torzilli G. State of the Art of Intraoperative Ultrasound in Liver Surgery: Current Use for Staging and Resection Guidance. Ultraschall in Med 2014; 35: 500-514
  • 63 D’Onofrio M, Biagioli E, Gerardi C et al. Diagnostic Performance of Contrast-Enhanced Ultrasound (CEUS) and Contrast-Enhanced Endoscopic Ultrasound (ECEUS) for the Differentiation of Pancreatic Lesions: A Systematic Review and Meta-Analysis. Ultraschall in Med 2014; 35: 515-521
  • 64 Wildner D, Pfeifer L, Goertz RS et al. Dynamic Contrast-Enhanced Ultrasound (DCE-US) for the Characterization of Hepatocellular Carcinoma and Cholangiocellular Carcinoma. Ultraschall in Med 2014; 35: 522-527
  • 65 Lock G, Schröder C, Schmidt C et al. Contrast-Enhanced Ultrasound and Real-Time Elastography for the Diagnosis of Benign Leydig Cell Tumors of the Testis – A Single Center Report on 13 Cases. Ultraschall in Med 2014; 35: 534-539
  • 66 Zhuo J, Fu W, Liu S. Correlation of Contrast-Enhanced Ultrasound with Two Distinct Types of Blood Vessels for the Assessment of Angiogenesis in Lewis Lung Carcinoma. Ultraschall in Med 2014; 35: 468-472
  • 67 Höpfner M, Scheel AH, Braun M et al. Unusual Nodular Regenerative Hyperplasia Mimicking Liver Metastases in CEUS. Ultraschall in Med 2014; 35: 199-202
  • 68 Cui XW, Ignee A, Hocke M et al. Prolonged Heterogeneous Liver Enhancement on Contrast-Enhanced Ultrasound. Ultraschall in Med 2014; 35: 246-252
  • 69 Stenberg B, Chandler C, Wyrley-Birch H et al. Post-Operative 3-Dimensional Contrast-Enhanced Ultrasound (CEUS) Versus Tc99m-DTPA in the Detection of Post-Surgical Perfusion Defects in Kidney Transplants – Preliminary Findings. Ultraschall in Med 2014; 35: 273-278
  • 70 Dietrich CF, Ignee A, Greis C et al. Artifacts and Pitfalls in Contrast-Enhanced Ultrasound of the Liver. Ultraschall in Med 2014; 35: 108-128
  • 71 Trenker C, Kunsch S, Michl P et al. Contrast-Enhanced Ultrasound (CEUS) in Hepatic Lymphoma: Retrospective Evaluation in 38 Cases. Ultraschall in Med 2014; 35: 142-148
  • 72 Bertolotto M, Serafini G, Sconfienza LM et al. The Use of CEUS in the Diagnosis of Retinal/Choroidal Detachment and Associated Intraocular Masses – Preliminary Investigation in Patients with Equivocal Findings at Conventional Ultrasound. Ultraschall in Med 2014; 35: 173-180
  • 73 Liu Z, Guo J, Ren W et al. A Gastric Calcifying Fibrous Pseudotumor Detected by Transabdominal Ultrasound after Oral Administration of an Echoic Cellulose-Based Gastrointestinal Ultrasound Contrast Agent. Ultraschall in Med 2014; 35: 181-184
  • 74 Rubaltelli L, Beltrame V, Scagliori E et al. Potential Use of Contrast-Enhanced Ultrasound (CEUS) in the Detection of Metastatic Superficial Lymph Nodes in Melanoma Patients. Ultraschall in Med 2014; 35: 67-71
  • 75 De Robertis R, D'Onofrio M, Manfrin E et al. A Rare Case of Pancreatic Head Splenosis Diagnosed by Contrast-Enhanced Ultrasound. Ultraschall in Med 2014; 35: 72-74
  • 76 Braun B. Focal Liver Processes: ”Better is the Enemy of Good”: CEUS in the Fast Lane. Ultraschall in Med 2009; 30: 329-332
  • 77 Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277-2284
  • 78 Brenner DJ. Medical imaging in the 21st century – getting the best bang for the rad. N Engl J Med 2010; 362: 943-9435
  • 79 Sellars ME, Deganello A, Sidhu PS. Paediatric contrast-enhanced ultrasound (CEUS): a technique that requires co-operation for rapid implementation into clinical practice. Ultraschall in Med 2014; 35: 203-206
  • 80 Jacob J, Deganello A, Sellars ME et al. Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall in Med 2013; 34: 529-540