References
- 1
Dobashi K.
Nagaoka K.
Watanabe Y.
Nishida M.
Hamada M.
Takeuchi T.
Umezawa H.
J. Antibio.
1985,
1166
- 2
Ellestad GA.
Cosulich DB.
Broschard RW.
Martin JH.
Kunstmann MP.
Morton GO.
Lancaster JE.
Fulmor W.
Lovell FM.
J. Am. Chem. Soc.
1978,
100:
2515
-
For the synthetic studies of LL-BM123β, see the references:
-
3a
Araki K.
Miyazawa K.
Hashimoto H.
Yoshimura J.
Tetrahedron Lett.
1982,
23:
1705
-
3b
Araki K.
Kawa M.
Saito Y.
Hashimoto H.
Yoshimura J.
Bull. Chem. Soc, Jpn.
1986,
59:
3137
-
3c
Araki K.
Hashimoto H.
Yoshimura J.
Carbohydr. Res.
1982,
109:
143
-
4a
Oyama K.
Kondo T.
Synlett
1999,
1627 ; and references therein
-
4b
See also ref.
[3c]
- 5 We avoid glycosylation with iodophenol, because our preliminary experiments showed that catalytic hydrogenolysis of 6-iodo-glycopyranose is the most simple and high-yielding method for multigram synthesis of 6-deoxy glycopyranose. For recent examples of C6-deoxygenation: Medgyes A.
Farkas E.
Liptak A.
Pozsgay V.
Tetrahedron
1997,
53:
4159
- 7
Sugiyama T.
Bull. Chem. Soc. Jpn.
1981,
54:
2847
-
8a Bromination of β-phenyl glucoside 9 (Br2, CH2Cl2, -5 °C) and the Heck reaction of the resultant brominated glycosylated aromatic with alkenes has been reported by Lepoittevin et al.: Mabic S.
Lepoittevin J.-P.
Tetrahedron Lett.
1995,
36:
1705
-
8b
In our case, bromophenyl glycosides, prepared (NBS, DMF, r.t.) in good yields, were found to be poor substrates for the Heck reaction.
- 9 Although cinnamoyl glycosides are known as important natural products, their synthesis suffer from the low nucleophilicity of p-hydroxycinnamic acid derivatives. For example: Takada N.
Kato E.
Ueda K.
Yamamura S.
Ueda M.
Tetrahedron Lett.
2002,
43:
7655
-
12a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
23:
4467
-
12b
Takahashi S.
Kuroyama Y.
Sonogashira K.
Tohda Y.
Hagihara N.
Synthesis
1980,
627
-
For recent examples of the Sonogashira reacton using iodophenyl α-d-mannopyranoside for the efficient synthesis of sugar-rods and cyclodextrin-based cluster mannosides, see:
-
13a
Roy R.
Das SK.
Santoyo-Gonzalez F.
Hernandez-Mateo F.
Dam TK.
Brewer CF.
Chem.-Eur. J.
2000,
6:
1757
-
13b
Ortega-Caballero F.
Gimenez-Martinez JJ.
Vargas-Berenguel A.
Org. Lett.
2003,
14:
2389
6 This acid-catalyzed glycosylation initially led to the formation of an anomeric mixture of phenyl galactosides. Prolonged reaction time (4 d) resulted in a gradual decrease of the β-isomer proportion and concomitant increase in the formation of α-anomer.
10 We have found the reversal of selectivity in this glycosylation using TMSOTf and Et2O (Scheme
[5]
).
11 Spectroscopic data of 19; [α]D
26 = +98.9 (c 1.09, CHCl3). 1H NMR (CDCl3, 300 MHz): δ = 1.17 (d, J = 6.5 Hz, 3 H), 1.40-1.90 (m, 6 H), 1.44 (s, 9 H), 1.48 (s, 9 H), 2.05 (s, 3 H), 2.07 (s, 3 H), 3.08-3.25 (br s, 4 H), 3.25-3.40 (br s, 4 H), 3.64 (s, 3 H), 3.93 (dq, J = 10.5, 6.5 Hz, 1 H), 4.18 (td, J = 10.5, 3.5 Hz), 4.50-4.70 (br s, 1 H), 4.94 (dd, J = 10.5, 9.5 Hz, 1 H), 5.11 (d, J = 10.0 Hz, 1 H), 5.37 (dd, J = 10.5, 9.5 Hz, 1 H), 5.54 (d, J = 3.5 Hz, 1 H), 6.37 (d, J = 15.5 Hz, 1 H), 7.04-7.10 (3 H), 7.44-7.52 (2 H), 7.57 (d, J = 15.5 Hz, 1 H). 13C NMR (CDCl3, 75 MHz): δ = 17.1, 20.47, 20.53, 25.5, 27.2, 27.5, 28.19, 28.23, 35.6, 39.9, 43.2, 46.5, 52.3, 53.9, 66.3, 70.7, 73.1, 79.0, 79.7, 95.6, 116.4, 120.2, 129.2, 129.8, 139.4, 156.0, 156.5, 157.0, 166.1, 169.7, 171.2.