Plant Biol (Stuttg) 2004; 6(5): 537-544
DOI: 10.1055/s-2004-821270
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Origin and Evolution of the Light-Dependent Protochlorophyllide Oxidoreductase (LPOR) Genes

J. Yang1 , Q. Cheng2
  • 1College of Life Sciences, Peking University, Beijing 100871, China
  • 2Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge CB2 3EA, UK
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. September 2004 (online)

Abstract

Light-dependent NADPH-protochlorophyllide oxidoreductase (LPOR) is a nuclear-encoded chloroplast protein in green algae and higher plants which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. Light-dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light-independent chlorophyll biosynthetic pathway, which is catalyzed by light-independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light-dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light-dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome-wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.

References

  • 1 Armstrong G. A., Runge S., Frick G., Sperling U., Apel K.. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. .  Plant Physiology. (1995);  108 1505-1517
  • 2 Beer N. S., Griffiths W. T.. Purification of the enzyme NADPH:protochlorophyllide oxidoreductase.  Biochemical Journal. (1981);  195 83-92
  • 44 Berman-Frank I., Lundgren P., Falkowski P.. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria.  Research in Microbiology. (2003);  154 157-164
  • 3 Brown J. R.. Ancient horizontal gene transfer.  Nature Reviews Genetics. (2003);  4 121-132
  • 4 Brown J. R., Doolittle W. F.. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 2441-2445
  • 5 Burke D. H., Hearst J. E., Sidow A.. Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins.  Proceedings of the National Academy of Sciences of the USA. (1993);  90 7134-7138
  • 6 Cheng Q.. Studies on the Expression and Function of Klebsiella pneumoniae Nitrogenase Iron Protein (Kp2) in the Chloroplast of the Eukaryotic Unicellular Green Alga - Chlamydomonas reinhardtii. Ph.D thesis, University of East Anglia, Norwich, UK. (1998)
  • 7 Dahlin C., Aronsson H., Wilks H. M., Lebedev N., Sundqvist C., Timko M. P.. The role of protein surface charge in catalytic activity and chloroplast membrane association of the pea NADPH: protochlorophyllide oxidoreductase (POR) as revealed by alanine scanning mutagenesis.  Plant Molecular Biology. (1999);  39 309-323
  • 8 Forreiter C., Apel K.. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). .  Planta. (1993);  190 536-545
  • 9 Fujita Y.. Protochlorophyllide reduction: a key step in the greening of plants.  Plant and Cell Physiology. (1996);  37 411-421
  • 10 Fujita Y., Bauer C. E.. Reconstitution of light-independent protochlorophyllide reductase from purified Bchl and BchN-BchB subunits.  Journal of Biological Chemistry. (2000);  275 23583-23588
  • 11 Fujita Y., Takagi H., Hase T.. Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. .  Plant and Cell Physiology. (1998);  39 177-185
  • 12 Graham D. E., Overbeek R., Olsen G. J., Woese C. R.. An archaeal genomic signature.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 3304-3308
  • 13 Griffiths W. T.. Reconstitution of chlorophyllide formation by isolated etioplast membranes.  Biochemical Journal. (1978);  174 681-692
  • 14 Griffiths W. T.. Protochlorophyllide reduction. Scheer, H., ed. The Chlorophylls. Boca Raton; CRC Press (1991): 433-449
  • 15 Gupta R. S., Mukhtar T., Singh B.. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis.  Molecular Microbiology. (1999);  32 893-906
  • 16 Hall T. A.. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.  Nucleic Acids Symposium Series. (1999);  41 95-98
  • 17 Harpster M., Apel K.. The light-dependent regulation of gene expression during plastid development in higher plants.  Physiologia Plantarum. (1985);  64 147-152
  • 45 Hedges S. B., Chen H., Kumar S., Wang D. Y., Thompson A. S., Watanabe H.. A genomic timescale for the origin of eukaryotes.  BMC Evolutionary Biology. (2001);  1 4
  • 18 Holtorf H., Reinbothe S., Reinbothe C., Bereza B., Apel K.. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.).  Proceedings of the National Academy of Sciences of the USA. (1995);  92 3254-3258
  • 19 Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T.. Evolutionary relationship of Archaea, Bacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.  Proceedings of the National Academy of Sciences of the USA. (1989);  86 9355-9359
  • 20 Jones D. T., Taylor W. R., Thornton J. M.. The rapid generation of mutation data matrices from protein sequences.  Computer Application in Biosciences. (1992);  8 275-282
  • 21 Kallberg Y., Oppermann U., Jörnvall H., Persson B.. Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes.  Protein Science. (2002 a);  11 636-641
  • 22 Kallberg Y., Oppermann U., Jörnvall H., Persson B.. Short-chain dehydrogenases/reductases (SDRs): Coenzyme-based functional assignments in completed genomes.  European Journal of Biochemistry. (2002 b);  269 4409-4417
  • 23 Kumar S., Tamura K., Jakobsen I. B., Nei M.. MEGA2: Molecular evolutionary genetics analysis software. Tempe, Arizona, USA; Arizona State University (2001)
  • 24 Leister D.. Chloroplast research in the genomic age.  Trends in Genetics. (2003);  19 47-56
  • 25 Li J., Timko M. P.. The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase.  Plant Molecular Biology. (1996);  30 15-37
  • 26 Martin W.. Gene transfer from organelles to the nucleus: Frequent and in big chunks.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 8612-8614
  • 27 Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., Penny D.. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 12246-12251
  • 28 Nishiyama T., Fujita T., Shin-I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 8007-8012
  • 29 Olsen G. J., Woese C. R.. Archaeal genomics - an overview.  Cell. (1997);  89 991-994
  • 30 Oppermann U., Filling C., Hult M., Shafqat N., Wu X., Lindh M., Shafqat J., Nordling E., Kallberg Y., Persson B., Jörnvall H.. Short-chain dehydrogenases/reductases (SDR): the 2002 update.  Chemico-Biological Interactions. (2003);  143-144 247-253
  • 31 Reinbothe S., Reinbothe C., Lebedev N., Apel K.. PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis.  Plant Cell. (1996);  8 763-769
  • 32 Saitou N., Nei M.. The neighbor-joining method: a new method for reconstructing phylogenetic trees.  Molecular Biology and Evolution. (1987);  4 406-425
  • 33 Sato-Nara K., Demura T., Fukuda H.. Expression of photosynthesis-related genes and their regulation by light during somatic embryogenesis in Daucus carota. .  Planta. (2004);  219 23-31
  • 34 Schoefs B., Franck F.. Protochlorophyllide Reduction: Mechanisms and Evolution.  Photochemistry and Photobiology. (2003);  78 543-557
  • 35 Suzuki Jon Y., Bauer C. E.. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 3749-3753
  • 36 Takio S., Nakao N., Suzuki T., Tanaka K., Yamamoto I., Satoh T.. Light-dependent expression of protochlorophyllide oxidoreductase gene in the liverwort, Marchantia paleacea var. diptera. .  Plant and Cell Physiology. (1998);  39 665-669
  • 37 Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.  Nucleic Acids Research. (1997);  25 4876-4882
  • 38 Wilks H. M., Timko M. P.. A light-dependent complementation system for analysis of NADPH : protochlorophyllide oxidoreductase: Identification and mutangenesis of two conserved residues that are essential for enzyme activity.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 724-728
  • 39 Woese C. R., Kandler O., Wheelis M. L.. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.  Proceedings of the National Academy of Sciences of the USA. (1990);  87 4576-4579
  • 40 Xiong J., Fischer W. M., Inoue K., Nakahara M., Bauer C. E.. Molecular evidence for the early evolution of photosynthesis.  Science. (2000);  289 1724-1730
  • 41 Yang Z.. PAML: a program package for phylogenetic analysis by maximum likelihood (http://abacus.gene.ucl.ac.uk/software/paml.html).  Computer Applications in the Biosciences. (1997);  13 555-556
  • 42 Yoder A. D., Yang. Z.. Estimation of primate speciation dates using local molecular clocks.  Molecular Biology and Evolution. (2000);  17 1081-1090
  • 43 Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D.. A molecular timeline for the origin of photosynthetic eukaryotes.  Molecular Biology and Evolution. (2004);  21 809-818

Q. Cheng

Department of Plant Sciences
University of Cambridge

Downing Site

Cambridge CB2 3EA

UK

eMail: qc205@cam.ac.uk

Section Editor: W. Martin