References
-
1a
Eguchi T.
Kobayashi K.
Uekusa H.
Ohashi Y.
Mizoue K.
Matsushima Y.
Kakinuma K.
Org. Lett.
2002,
4:
3383
-
1b Detailed spectral data of FD-891 are given in: Seki-Asano M.
Tsuchida Y.
Hanada K.
Mizoue K.
J. Antibiot.
1994,
47:
1234
- 2
Murga J.
García-Fortanet J.
Carda M.
Marco JA.
Tetrahedron Lett.
2004,
45:
7499
- 3
Eguchi T.
Yamamoto K.
Mizoue K.
Kakinuma K.
J. Antibiot.
2004,
57:
156
- 4
Bartra M.
Urpí F.
Vilarrasa J. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products
Vol. 2:
Lukacs G.
Springer Verlag;
Berlin:
1993.
p.1-65
- 5
Blakemore PR.
J. Chem. Soc., Perkin Trans. 1
2002,
2563
- 6 The synthesis of a compound structurally related to fragment A has recently been reported: Chng S.-S.
Xu J.
Loh T.-P.
Tetrahedron Lett.
2003,
44:
4997
- 7
Trost BM.
Chisholm JD.
Wrobleski ST.
Jung M.
J. Am. Chem. Soc.
2002,
124:
12420
- 8 This Z → E isomerization during the oxidation with PCC has been reported to occur with the corresponding benzyl derivative: Danishefsky SJ.
Berman EM.
Ciufolini M.
Etheredge SJ.
Segmuller BE.
J. Am. Chem. Soc.
1985,
107:
3891
-
9a
Evans DA.
Aldrichimica Acta
1982,
15:
23-32
-
9b
Kim BM.
Williams SF.
Masamune S. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Winterfeldt E.
Pergamon Press;
Oxford:
1993.
p.239-276
-
9c See also: Cowden CJ.
Paterson I.
Org. React.
1997,
51:
1
- 10
Sibi MP.
Org. Prep. Proced. Int.
1993,
25:
15
- 11 This olefination gave a better yield in 1,2-dichloroethane at 60 °C than in toluene at 110 °C, in contrast to that observed in a structurally similar situation: Marshall JA.
Adams ND.
J. Org. Chem.
2002,
67:
733
- 12
Horita K.
Yoshioka T.
Tanaka T.
Oikawa Y.
Yonemitsu O.
Tetrahedron
1986,
42:
3021
- 13
Katsuki T.
Martín VS.
Org. React.
1996,
48:
1
-
14a
Brown HC.
Ramachandran PV.
J. Organomet. Chem.
1995,
500:
1
-
14b
Ramachandran PV.
Aldrichimica Acta
2002,
35:
23
15 Compound A: 1H NMR (500 MHz, CDCl3): δ = 7.10 (br s, 1 H), 5.83 (m, 1 H), 5.55 (d, J = 10.0 Hz, 1 H), 5.10-5.00 (m, 2 H), 4.20 (q, J = 7.0 Hz, 2 H), 3.61 (dd, J = 5.0, 4.0 Hz, 1 H), 3.48 (dt, J = 5.5, 6.5 Hz, 1 H), 2.96 (dd, J = 5.5, 2.2 Hz, 1 H), 2.88 (dd, J = 4.0, 2.2 Hz, 1 H), 2.68 (ddq, J = 10.0, 5.0, 6.8 Hz, 1 H), 2.28 (t, J = 6.5 Hz, 2 H), 2.00 (d, J = 1.3 Hz, 3 H), 1.85 (d, J = 1.0 Hz, 3 H), 1.30 (t, J = 7.0 Hz, 3 H), 1.06 (d, J = 6.8 Hz, 3 H), 0.90 (s, 9 H), 0.89 (s, 9 H), 0.09 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H), 0.01 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 169.1, 142.7, 138.1, 134.5, 131.9, 125.9, 117.3, 73.6, 73.0, 60.6, 58.5, 57.2, 39.5, 37.7, 25.9 (× 3), 25.8 (× 3), 18.3, 18.2, 16.6, 15.7, 14.3, 14.0, -4.2, -4.4, -4.8, -4.9.
16 None of the intermediates in the way towards A nor compound A itself was crystalline. Therefore, X-ray analyses aimed at configurational confirmation could not be performed. However, the key asymmetric transformations used here (Evans aldolization, Sharpless epoxidation and Brown allylboration) are well-known processes with safely predictable stereochemical outcomes. We are thus confident that the structure of synthetic intermediate A is that depicted in Scheme
[3]
. Furthermore, a comparison of 1H/13C NMR chemical shift and coupling constants values within the relevant fragment of FD-891 with those of compound A (see Table
[1]
below, atom numbering is shown in Figure
[1]
, coupling constant values are given in parenthesis) gives support to our structural assignment (the observed differences can be accounted for with the fact that the cyclic FD-891 is much more rigid than A from the conformational point of view; moreover, A bears two bulky TBSO groups instead of the free hydroxyls).
17 Preliminary experiments have shown that oxidative cleavage of the terminal double bond in A can be performed via sequential osmylation and NaIO4 oxidation to yield an unstable aldehyde.
Table 1 Comparison of Spectroscopic Data of Compounds A and FD-891 |
|
Atom
|
FD-891
|
A
|
Atom
|
FD-891
|
A
|
|
H-3
|
7.30, t (1.3)
|
7.10, br s
|
C-1
|
168.9
|
169.1
|
H-5
|
5.53, d (10.3)
|
5.55, d (10.0)
|
C-2
|
124.3
|
125.9
|
H-6
|
3.12, ddq (10.3, 4.1, 6.9)
|
2.68, ddq (10.0, 5.0, 6.8)
|
C-3
|
144.0
|
138.1
|
H-7
|
4.17, dd (6.0, 4.1)
|
3.61, dd (5.0, 4.0)
|
C-4
|
135.7
|
131.9
|
H-8
|
3.25, dd (6.0, 2.5)
|
2.88, dd (4.0, 2.2)
|
C-5
|
141.6
|
134.5
|
H-9
|
3.15, dd (2.5, 0.8)
|
2.96, dd (5.5, 2.2)
|
C-6
|
35.9
|
37.7
|
H-10
|
3.55, m
|
3.48, dt (5.5, 6.5)
|
C-7
|
70.8
|
73.0
|
H-11
|
2.55, m, 2 H
|
2.28, t, 2 H (6.5)
|
C-8
|
55.1
|
57.2
|
MeC2
|
2.10, d (1.2)
|
2.00, d (1.3)
|
C-9
|
56.0
|
58.5
|
MeC4
|
2.03, d (1.2)
|
1.85, d (1.0)
|
C-10
|
71.1
|
73.6
|
MeC6
|
1.15, d (6.9)
|
1.06 d (6.8)
|
C-11
|
37.9
|
39.5
|
|
|
|
MeC2
|
13.6
|
14.0
|
|
|
|
MeC4
|
15.5
|
15.7
|
|
|
|
MeC6
|
16.5
|
16.6
|
|