Subscribe to RSS
DOI: 10.1055/s-2007-984882
Asymmetric Morita-Baylis-Hillman Reaction Catalyzed by Simple Amino Alcohol Derived Thioureas
Publication History
Publication Date:
12 July 2007 (online)
Abstract
Thioureas straightforwardly derived from commercially available enantiopure amino alcohols have been found to promote the asymmetric Morita-Baylis-Hillman reaction of 2-cyclohexen-1-one and different aldehydes in the presence of triethylamine under solvent-free conditions. The corresponding allylic alcohols were obtained in good to high yields and up to 88% ee.
Key words
Morita-Baylis-Hillman reaction - chiral thioureas - asymmetric organocatalysis - amino alcohols
- For recent reviews, see:
-
1a
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 -
1b
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
1c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
1d
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
2a
Bailey M.Staton I.Ashton PR.Marko IE.Ollis WD. Tetrahedron: Asymmetry 1991, 2: 495 -
2b
Iwabuchi Y.Sugihara T.Esumi T.Hatakeyama S. Tetrahedron Lett. 2001, 42: 7867 -
2c
Frank SA.Mergott DJ.Roush WR. J. Am. Chem. Soc. 2002, 124: 2404 -
3a
Walsh LM.Winn CL.Goodman JM. Tetrahedron Lett. 2002, 43: 8219 -
3b
Yang K.-S.Lee W.-D.Pan J.-F.Chen K. J. Org. Chem. 2003, 68: 915 -
3c
Yamada YMA.Ikegami S. Tetrahedron Lett. 2000, 41: 2165 -
3d
Matsui K.Takizawa S.Sasai H. Tetrahedron Lett. 2005, 46: 1943 -
4a
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 -
4b
Nakano A.Takahashi K.Ishihara J.Hatakeyama S. Org. Lett. 2006, 8: 5357 -
5a
McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094 -
5b
McDougal NT.Trevellini WL.Rodgen SA.Kliman LT.Schaus SE. Adv. Synth. Catal. 2004, 346: 1231 - For bifunctional catalysts in the aza-MBH reaction, see:
-
5c
Matsui K.Takizawa S.Sasai H. J. Am. Chem. Soc. 2005, 127: 3680 -
5d
Shi M.Chen L.-H.Li C.-Q. J. Am. Chem. Soc. 2005, 127: 3790 -
5e
Matsui K.Takizawa S.Sasai H. Synlett 2006, 761 -
6a
Shi M.Jiang J.-K.Li C.-Q. Tetrahedron Lett. 2001, 42: 127 -
6b
Imbriglio JE.Vasbinder MM.Miller SJ. Org. Lett. 2003, 5: 3741 -
6c
Vasbinder MM.Imbriglio JE.Miller SJ. Tetrahedron 2006, 62: 11450 -
6d
Aroyan CE.Vasbinder MM.Miller SJ. Org. Lett. 2005, 7: 3849 - 7
Hayashi Y.Tamura T.Shoji M. Adv. Synth. Catal. 2004, 346: 1106 -
8a
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2004, 45: 5589 -
8b
Berkessel A.Roland K.Neudörfl JM. Org. Lett. 2006, 8: 4195 - 9
Wang J.Li H.Yu X.Zu L.Wang W. Org. Lett. 2005, 7: 4293 - 10
Raheem IT.Jacobsen EN. Adv. Synth. Catal. 2005, 347: 1701 -
11a
Bailey M.Markó IE.Ollis WD.Rasmussen PR. Tetrahedron Lett. 1990, 31: 4509 -
11b
Markó IE.Giles PR.Hindley NJ. Tetrahedron 1997, 53: 1015 -
11c
Aggarwal VK.Mereu A.Tarver GJ.MacCague R. J. Org. Chem. 1998, 63: 7183 -
11d
Ameer F.Drewes FE.Freese S.Kaye PT. Synth. Commun. 1988, 18: 495 -
11e
Aggarwal VK.Dean DK.Mereu A.Williams R. J. Org. Chem. 2002, 67: 510 -
11f
Shi M.Liu Y.-H. Org. Biomol. Chem. 2006, 4: 1468 -
11g
Park K.-S.Kim H.Choo H.Chong Y. Synlett 2007, 395 -
12a
Price KE.Broadwater SJ.Jung HM.McQuade DT. Org. Lett. 2005, 7: 147 -
12b
Aggarwal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 -
12c
Buskens P.Klankermayer J.Leitner W. J. Am. Chem. Soc. 2005, 127: 16762 - For recent reviews on hydrogen-bonding catalysis by ureas and thioureas, see:
-
13a
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 -
13b
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
13c
Connon SJ. Chem. Eur. J. 2006, 12: 5418 - 14
Procedure for the Synthesis of Catalysts 1
To a solution of amino alcohol (0.5 mmol) in CH2Cl2 (2 mL) was added dropwise 3,5-bis(trifluoromethyl)phenyl isothiocyanate (92 µL, 0.5 mmol) at 0 °C under N2. After stirring the reaction mixture for 3-5 h at r.t., the solvent was removed under reduced pressure and residue was purified by flash chromatography (PE-Et2O, 90:10) to provide 1.Spectral data for catalyst 1a: white solid, mp 145-147 °C; [α]D
20 -55.0 (c 0.30, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.56 (br s, 1 H), 7.80 (br s, 2 H), 7.67 (s, 1 H), 7.50-7.27 (m, 5 H), 6.91 (br s, 1 H), 5.02 (br s, 1 H), 4.18 (br s, 1 H), 3.65-3.56 (m, 2 H), 3.00 (br s, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 180.7, 140.5, 138.9, 132.8, 128.9, 128.6, 125.7, 123.8, 119.4, 76.2, 52.1. IR (neat): 3261, 3066, 1538, 1385, 1278, 1133, 700, 682 cm-1. MS (EI): m/z (%) = 271 (100), 213 (37), 202 (58), 163 (30).Catalyst 1d: white solid, mp 66-68 °C; [α]D
19 -53.8 (c 0.34, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.5 (br s, 1 H), 7.70-7.20 (m, 14 H), 6.88 (br s, 1 H), 5.64 (br s, 1 H), 2.95 (br s, 1 H), 1.15 (br s, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 178.8, 144.3, 138.4, 133.0, 128.9, 128.7, 127.7, 127.5, 126.0, 125.7, 125.4, 125.2, 123.5, 119.3, 81.3, 56.7, 14.9. IR (neat): 3369, 3062, 1528, 1449,1382, 1278, 1176, 1136, 701, 682 cm-1. MS (EI): m/z (%) = 271 (100), 229 (42), 213 (72), 202 (76), 182 (48), 163 (50).Catalyst 1e: white solid, mp 66-68 °C; [α]D
20 -16.7 (c 0.32, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.64 (br s, 1 H), 7.71-7.18 (m, 12 H), 6.92-6.87 (m, 1 H), 5.59 (br s, 1 H), 2.84 (br s, 1 H), 2.04 (br s, 1 H), 1.03 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 180.6, 144.9, 144.4, 138.4, 133.9, 128.5, 128.1, 127.3, 125.6, 125.5, 125.3, 125.1, 123.8, 122.8, 119.3, 83.1, 63.4, 29.7, 23.4, 18.4. IR (neat): 3350, 3063, 2963, 1562, 1449, 1277, 1381, 1176, 1135, 703, 683 cm-1. MS (EI): m/z (%) = 271 (100), 229 (40), 202 (34), 182 (34), 163 (64).Catalyst 1f: white solid, mp 81-83 °C; [α]D
22 -251.7 (c 0.34, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.00 (br s, 1 H), 7.68-7.59 (m, 3 H), 7.42-7.26 (m, 5 H), 7.15-7.05 (m, 8 H), 7.00-6.95 (m, 2 H), 6.46 (br s, 1 H), 2.76 (br s, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.3, 143.6, 143.4, 138.3, 136.3, 133.2, 128.9, 128.7, 128.1, 127.9, 127.3, 125.9, 125.5, 123.7, 119.6, 81.7, 64.7. IR (neat): 3255, 3062, 1518, 1449, 1381, 1278, 1176, 1137, 699, 682 cm-1. MS (EI): m/z (%) = 271 (100), 213 (34), 202 (28), 163 (42).Catalyst 1g: white solid, mp 79-82 °C; [α]D
21 -75.1 (c 0.33, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.03 (br s, 1 H), 7.64-7.15 (m, 15 H), 7.03-7.00 (m, 2 H), 6.78 (s, 1 H), 5.91 (br s, 1 H), 3.17 (br s, 1 H), 2.85-2.78 (m, 2 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.5, 144.2, 138.0, 131.9, 129.5, 128.7, 128.6, 127.5, 127.4, 126.9, 126.4, 125.6, 125.2, 124.0, 122.7, 119.3, 81.8, 60.2, 37.4. IR (neat): 3320, 3063, 1539, 1449, 1383, 1277, 1181, 1135, 701, 681 cm-1. MS (ESI+): m/z (%) = 575 (70) [M + H+], 557 (100) [M - 17].Catalyst 1h: white solid, mp 49-51 °C; [α]D
21 -8.50 (c 0.30, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.08 (br s, 1 H), 7.67 (s, 1 H), 7.33-7.14 (m, 12 H), 5.84 (br s, 1 H), 5.38 (br s, 1 H), 4.90-4.85 (m, 1 H), 3.93 (d, J = 9.9 Hz, 1 H), 1.21 (d, J = 6.4 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.5, 141.5, 141.1, 138.0, 133.2, 129.0, 128.9, 128.6, 128.3, 128.2, 127.9, 127.2, 127.1, 124.3, 122.7, 119.9, 58.1, 54.2, 19.6. IR (neat): 3063, 1532, 1382, 1279, 1176, 1135, 888, 752, 702 cm-1. MS (ESI+): m/z (%) = 483 (100) [M + H+]
- 15
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 -
16a
Lattanzi A. Org. Lett. 2005, 7: 2579 -
16b
Lattanzi A. Adv. Synth. Catal. 2006, 348: 339 -
16c
Lattanzi A.Russo A. Tetrahedron 2006, 62: 12264 -
18a
Markó IE.Giles PR.Hindley NJ. Tetrahedron 1997, 53: 1015 -
18b
Aggarwal VK.Mereu A. Chem. Commun. 1999, 2311 -
18c
Leadbeater NE.van der Pol CJ. J. Chem. Soc., Perkin Trans. 1 2001, 2831 -
18d
Aggarwal VK.Emme I.Fulford SY. J. Org. Chem. 2003, 68: 692 - 20 A similar outcome for aliphatic aldehydes was observed in organocatalyzed MBH reaction, see ref. 5a,b, 8, and 9
- 21 The corresponding products are generally obtained in moderate yields and ee, see ref. 5a,b, 8, and 9
- 22 The best result achieved up to now for the allylic alcohol obtained when reacting benzaldehyde and 2-cyclohexen-1-one is 65% yield and 77% ee, see ref. 8b
References and Notes
The following solvents were employed at a concentration of 2 M with respect to the aldehyde: toluene, MeOH, MeCN, THF, CH2Cl2.
19Typical Procedure for the MBH Reaction To a capped vial containing catalyst 1f (22.4 mg, 0.04 mmol) was added 2-cyclohexen-1-one (78 mL, 0.8 mmol) and Et3N (4.4 mL, 0.04 mmol). The mixture was stirred for 5 min and then the aldehyde was added (0.2 mmol). After 100-147 h, the reaction was directly purified by flash silica gel chromatography eluting with PE-Et2O mixtures (98:2 to 80:20) to give a clear oil. Spectral data of allylic alcohols matched those reported in the literature.2,3,5