Abstract
Thioureas straightforwardly derived from commercially available enantiopure amino alcohols have been found to promote the asymmetric Morita-Baylis-Hillman reaction of 2-cyclohexen-1-one and different aldehydes in the presence of triethylamine under solvent-free conditions. The corresponding allylic alcohols were obtained in good to high yields and up to 88% ee.
Key words
Morita-Baylis-Hillman reaction - chiral thioureas - asymmetric organocatalysis - amino alcohols
References and Notes
For recent reviews, see:
1a
Masson G.
Housseman C.
Zhu J.
Angew. Chem. Int. Ed.
2007,
46:
4614
1b
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
1c
Langer P.
Angew. Chem. Int. Ed.
2000,
39:
3049
1d
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
2a
Bailey M.
Staton I.
Ashton PR.
Marko IE.
Ollis WD.
Tetrahedron: Asymmetry
1991,
2:
495
2b
Iwabuchi Y.
Sugihara T.
Esumi T.
Hatakeyama S.
Tetrahedron Lett.
2001,
42:
7867
2c
Frank SA.
Mergott DJ.
Roush WR.
J. Am. Chem. Soc.
2002,
124:
2404
3a
Walsh LM.
Winn CL.
Goodman JM.
Tetrahedron Lett.
2002,
43:
8219
3b
Yang K.-S.
Lee W.-D.
Pan J.-F.
Chen K.
J. Org. Chem.
2003,
68:
915
3c
Yamada YMA.
Ikegami S.
Tetrahedron Lett.
2000,
41:
2165
3d
Matsui K.
Takizawa S.
Sasai H.
Tetrahedron Lett.
2005,
46:
1943
4a
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
J. Am. Chem. Soc.
1999,
121:
10219
4b
Nakano A.
Takahashi K.
Ishihara J.
Hatakeyama S.
Org. Lett.
2006,
8:
5357
5a
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
5b
McDougal NT.
Trevellini WL.
Rodgen SA.
Kliman LT.
Schaus SE.
Adv. Synth. Catal.
2004,
346:
1231
For bifunctional catalysts in the aza-MBH reaction, see:
5c
Matsui K.
Takizawa S.
Sasai H.
J. Am. Chem. Soc.
2005,
127:
3680
5d
Shi M.
Chen L.-H.
Li C.-Q.
J. Am. Chem. Soc.
2005,
127:
3790
5e
Matsui K.
Takizawa S.
Sasai H.
Synlett
2006,
761
6a
Shi M.
Jiang J.-K.
Li C.-Q.
Tetrahedron Lett.
2001,
42:
127
6b
Imbriglio JE.
Vasbinder MM.
Miller SJ.
Org. Lett.
2003,
5:
3741
6c
Vasbinder MM.
Imbriglio JE.
Miller SJ.
Tetrahedron
2006,
62:
11450
6d
Aroyan CE.
Vasbinder MM.
Miller SJ.
Org. Lett.
2005,
7:
3849
7
Hayashi Y.
Tamura T.
Shoji M.
Adv. Synth. Catal.
2004,
346:
1106
8a
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
8b
Berkessel A.
Roland K.
Neudörfl JM.
Org. Lett.
2006,
8:
4195
9
Wang J.
Li H.
Yu X.
Zu L.
Wang W.
Org. Lett.
2005,
7:
4293
10
Raheem IT.
Jacobsen EN.
Adv. Synth. Catal.
2005,
347:
1701
11a
Bailey M.
Markó IE.
Ollis WD.
Rasmussen PR.
Tetrahedron Lett.
1990,
31:
4509
11b
Markó IE.
Giles PR.
Hindley NJ.
Tetrahedron
1997,
53:
1015
11c
Aggarwal VK.
Mereu A.
Tarver GJ.
MacCague R.
J. Org. Chem.
1998,
63:
7183
11d
Ameer F.
Drewes FE.
Freese S.
Kaye PT.
Synth. Commun.
1988,
18:
495
11e
Aggarwal VK.
Dean DK.
Mereu A.
Williams R.
J. Org. Chem.
2002,
67:
510
11f
Shi M.
Liu Y.-H.
Org. Biomol. Chem.
2006,
4:
1468
11g
Park K.-S.
Kim H.
Choo H.
Chong Y.
Synlett
2007,
395
12a
Price KE.
Broadwater SJ.
Jung HM.
McQuade DT.
Org. Lett.
2005,
7:
147
12b
Aggarwal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
12c
Buskens P.
Klankermayer J.
Leitner W.
J. Am. Chem. Soc.
2005,
127:
16762
For recent reviews on hydrogen-bonding catalysis by ureas and thioureas, see:
13a
Takemoto Y.
Org. Biomol. Chem.
2005,
3:
4299
13b
Taylor MS.
Jacobsen EN.
Angew. Chem. Int. Ed.
2006,
45:
1520
13c
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
14
Procedure for the Synthesis of Catalysts 1
To a solution of amino alcohol (0.5 mmol) in CH2 Cl2 (2 mL) was added dropwise 3,5-bis(trifluoromethyl)phenyl isothiocyanate (92 µL, 0.5 mmol) at 0 °C under N2 . After stirring the reaction mixture for 3-5 h at r.t., the solvent was removed under reduced pressure and residue was purified by flash chromatography (PE-Et2 O, 90:10) to provide 1 .Spectral data for catalyst 1a : white solid, mp 145-147 °C; [α]D
20 -55.0 (c 0.30, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.56 (br s, 1 H), 7.80 (br s, 2 H), 7.67 (s, 1 H), 7.50-7.27 (m, 5 H), 6.91 (br s, 1 H), 5.02 (br s, 1 H), 4.18 (br s, 1 H), 3.65-3.56 (m, 2 H), 3.00 (br s, 1 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 180.7, 140.5, 138.9, 132.8, 128.9, 128.6, 125.7, 123.8, 119.4, 76.2, 52.1. IR (neat): 3261, 3066, 1538, 1385, 1278, 1133, 700, 682 cm-1 . MS (EI): m/z (%) = 271 (100), 213 (37), 202 (58), 163 (30).Catalyst 1d : white solid, mp 66-68 °C; [α]D
19 -53.8 (c 0.34, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.5 (br s, 1 H), 7.70-7.20 (m, 14 H), 6.88 (br s, 1 H), 5.64 (br s, 1 H), 2.95 (br s, 1 H), 1.15 (br s, 3 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 178.8, 144.3, 138.4, 133.0, 128.9, 128.7, 127.7, 127.5, 126.0, 125.7, 125.4, 125.2, 123.5, 119.3, 81.3, 56.7, 14.9. IR (neat): 3369, 3062, 1528, 1449,1382, 1278, 1176, 1136, 701, 682 cm-1 . MS (EI): m/z (%) = 271 (100), 229 (42), 213 (72), 202 (76), 182 (48), 163 (50).Catalyst 1e : white solid, mp 66-68 °C; [α]D
20 -16.7 (c 0.32, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.64 (br s, 1 H), 7.71-7.18 (m, 12 H), 6.92-6.87 (m, 1 H), 5.59 (br s, 1 H), 2.84 (br s, 1 H), 2.04 (br s, 1 H), 1.03 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 3 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 180.6, 144.9, 144.4, 138.4, 133.9, 128.5, 128.1, 127.3, 125.6, 125.5, 125.3, 125.1, 123.8, 122.8, 119.3, 83.1, 63.4, 29.7, 23.4, 18.4. IR (neat): 3350, 3063, 2963, 1562, 1449, 1277, 1381, 1176, 1135, 703, 683 cm-1 . MS (EI): m/z (%) = 271 (100), 229 (40), 202 (34), 182 (34), 163 (64).Catalyst 1f : white solid, mp 81-83 °C; [α]D
22 -251.7 (c 0.34, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.00 (br s, 1 H), 7.68-7.59 (m, 3 H), 7.42-7.26 (m, 5 H), 7.15-7.05 (m, 8 H), 7.00-6.95 (m, 2 H), 6.46 (br s, 1 H), 2.76 (br s, 1 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 179.3, 143.6, 143.4, 138.3, 136.3, 133.2, 128.9, 128.7, 128.1, 127.9, 127.3, 125.9, 125.5, 123.7, 119.6, 81.7, 64.7. IR (neat): 3255, 3062, 1518, 1449, 1381, 1278, 1176, 1137, 699, 682 cm-1 . MS (EI): m/z (%) = 271 (100), 213 (34), 202 (28), 163 (42).Catalyst 1g : white solid, mp 79-82 °C; [α]D
21 -75.1 (c 0.33, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.03 (br s, 1 H), 7.64-7.15 (m, 15 H), 7.03-7.00 (m, 2 H), 6.78 (s, 1 H), 5.91 (br s, 1 H), 3.17 (br s, 1 H), 2.85-2.78 (m, 2 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 179.5, 144.2, 138.0, 131.9, 129.5, 128.7, 128.6, 127.5, 127.4, 126.9, 126.4, 125.6, 125.2, 124.0, 122.7, 119.3, 81.8, 60.2, 37.4. IR (neat): 3320, 3063, 1539, 1449, 1383, 1277, 1181, 1135, 701, 681 cm-1 . MS (ESI+ ): m/z (%) = 575 (70) [M + H+ ], 557 (100) [M - 17].Catalyst 1h : white solid, mp 49-51 °C; [α]D
21 -8.50 (c 0.30, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 8.08 (br s, 1 H), 7.67 (s, 1 H), 7.33-7.14 (m, 12 H), 5.84 (br s, 1 H), 5.38 (br s, 1 H), 4.90-4.85 (m, 1 H), 3.93 (d, J = 9.9 Hz, 1 H), 1.21 (d, J = 6.4 Hz, 3 H). 13 C NMR (100.6 MHz, CDCl3 ): δ = 179.5, 141.5, 141.1, 138.0, 133.2, 129.0, 128.9, 128.6, 128.3, 128.2, 127.9, 127.2, 127.1, 124.3, 122.7, 119.9, 58.1, 54.2, 19.6. IR (neat): 3063, 1532, 1382, 1279, 1176, 1135, 888, 752, 702 cm-1 . MS (ESI+ ): m/z (%) = 483 (100) [M + H+ ]
15
Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
6576
16a
Lattanzi A.
Org. Lett.
2005,
7:
2579
16b
Lattanzi A.
Adv. Synth. Catal.
2006,
348:
339
16c
Lattanzi A.
Russo A.
Tetrahedron
2006,
62:
12264
17 The following solvents were employed at a concentration of 2 M with respect to the aldehyde: toluene, MeOH, MeCN, THF, CH2 Cl2 .
18a
Markó IE.
Giles PR.
Hindley NJ.
Tetrahedron
1997,
53:
1015
18b
Aggarwal VK.
Mereu A.
Chem. Commun.
1999,
2311
18c
Leadbeater NE.
van der Pol CJ.
J. Chem. Soc., Perkin Trans. 1
2001,
2831
18d
Aggarwal VK.
Emme I.
Fulford SY.
J. Org. Chem.
2003,
68:
692
19
Typical Procedure for the MBH Reaction
To a capped vial containing catalyst 1f (22.4 mg, 0.04 mmol) was added 2-cyclohexen-1-one (78 mL, 0.8 mmol) and Et3 N (4.4 mL, 0.04 mmol). The mixture was stirred for 5 min and then the aldehyde was added (0.2 mmol). After 100-147 h, the reaction was directly purified by flash silica gel chromatography eluting with PE-Et2 O mixtures (98:2 to 80:20) to give a clear oil. Spectral data of allylic alcohols matched those reported in the literature.2,3,5
20 A similar outcome for aliphatic aldehydes was observed in organocatalyzed MBH reaction, see ref. 5a,b, 8, and 9
21 The corresponding products are generally obtained in moderate yields and ee, see ref. 5a,b, 8, and 9
22 The best result achieved up to now for the allylic alcohol obtained when reacting benzaldehyde and 2-cyclohexen-1-one is 65% yield and 77% ee, see ref. 8b