Synlett 2007(13): 2106-2110  
DOI: 10.1055/s-2007-984882
LETTER
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Morita-Baylis-Hillman Reaction Catalyzed by Simple Amino Alcohol Derived Thioureas

Alessandra Lattanzi*
Dipartimento di Chimica, Università di Salerno, Via Ponte don Melillo, 84084, Fisciano, Italy
Fax: +39(089)969603; e-Mail: lattanzi@unisa.it;
Weitere Informationen

Publikationsverlauf

Received 19 May 2007
Publikationsdatum:
12. Juli 2007 (online)

Abstract

Thioureas straightforwardly derived from commercially available enantiopure amino alcohols have been found to promote the asymmetric Morita-Baylis-Hillman reaction of 2-cyclohexen-1-one and different aldehydes in the presence of triethylamine under solvent-free conditions. The corresponding allylic alcohols were obtained in good to high yields and up to 88% ee.

    References and Notes

  • For recent reviews, see:
  • 1a Masson G. Housseman C. Zhu J. Angew. Chem. Int. Ed.  2007,  46:  4614 
  • 1b Basavaiah D. Rao PD. Hyma RS. Tetrahedron  1996,  52:  8001 
  • 1c Langer P. Angew. Chem. Int. Ed.  2000,  39:  3049 
  • 1d Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 2a Bailey M. Staton I. Ashton PR. Marko IE. Ollis WD. Tetrahedron: Asymmetry  1991,  2:  495 
  • 2b Iwabuchi Y. Sugihara T. Esumi T. Hatakeyama S. Tetrahedron Lett.  2001,  42:  7867 
  • 2c Frank SA. Mergott DJ. Roush WR. J. Am. Chem. Soc.  2002,  124:  2404 
  • 3a Walsh LM. Winn CL. Goodman JM. Tetrahedron Lett.  2002,  43:  8219 
  • 3b Yang K.-S. Lee W.-D. Pan J.-F. Chen K. J. Org. Chem.  2003,  68:  915 
  • 3c Yamada YMA. Ikegami S. Tetrahedron Lett.  2000,  41:  2165 
  • 3d Matsui K. Takizawa S. Sasai H. Tetrahedron Lett.  2005,  46:  1943 
  • 4a Iwabuchi Y. Nakatani M. Yokoyama N. Hatakeyama S. J. Am. Chem. Soc.  1999,  121:  10219 
  • 4b Nakano A. Takahashi K. Ishihara J. Hatakeyama S. Org. Lett.  2006,  8:  5357 
  • 5a McDougal NT. Schaus SE. J. Am. Chem. Soc.  2003,  125:  12094 
  • 5b McDougal NT. Trevellini WL. Rodgen SA. Kliman LT. Schaus SE. Adv. Synth. Catal.  2004,  346:  1231 
  • For bifunctional catalysts in the aza-MBH reaction, see:
  • 5c Matsui K. Takizawa S. Sasai H. J. Am. Chem. Soc.  2005,  127:  3680 
  • 5d Shi M. Chen L.-H. Li C.-Q. J. Am. Chem. Soc.  2005,  127:  3790 
  • 5e Matsui K. Takizawa S. Sasai H. Synlett  2006,  761 
  • 6a Shi M. Jiang J.-K. Li C.-Q. Tetrahedron Lett.  2001,  42:  127 
  • 6b Imbriglio JE. Vasbinder MM. Miller SJ. Org. Lett.  2003,  5:  3741 
  • 6c Vasbinder MM. Imbriglio JE. Miller SJ. Tetrahedron  2006,  62:  11450 
  • 6d Aroyan CE. Vasbinder MM. Miller SJ. Org. Lett.  2005,  7:  3849 
  • 7 Hayashi Y. Tamura T. Shoji M. Adv. Synth. Catal.  2004,  346:  1106 
  • 8a Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Tetrahedron Lett.  2004,  45:  5589 
  • 8b Berkessel A. Roland K. Neudörfl JM. Org. Lett.  2006,  8:  4195 
  • 9 Wang J. Li H. Yu X. Zu L. Wang W. Org. Lett.  2005,  7:  4293 
  • 10 Raheem IT. Jacobsen EN. Adv. Synth. Catal.  2005,  347:  1701 
  • 11a Bailey M. Markó IE. Ollis WD. Rasmussen PR. Tetrahedron Lett.  1990,  31:  4509 
  • 11b Markó IE. Giles PR. Hindley NJ. Tetrahedron  1997,  53:  1015 
  • 11c Aggarwal VK. Mereu A. Tarver GJ. MacCague R. J. Org. Chem.  1998,  63:  7183 
  • 11d Ameer F. Drewes FE. Freese S. Kaye PT. Synth. Commun.  1988,  18:  495 
  • 11e Aggarwal VK. Dean DK. Mereu A. Williams R. J. Org. Chem.  2002,  67:  510 
  • 11f Shi M. Liu Y.-H. Org. Biomol. Chem.  2006,  4:  1468 
  • 11g Park K.-S. Kim H. Choo H. Chong Y. Synlett  2007,  395 
  • 12a Price KE. Broadwater SJ. Jung HM. McQuade DT. Org. Lett.  2005,  7:  147 
  • 12b Aggarwal VK. Fulford SY. Lloyd-Jones GC. Angew. Chem. Int. Ed.  2005,  44:  1706 
  • 12c Buskens P. Klankermayer J. Leitner W. J. Am. Chem. Soc.  2005,  127:  16762 
  • For recent reviews on hydrogen-bonding catalysis by ureas and thioureas, see:
  • 13a Takemoto Y. Org. Biomol. Chem.  2005,  3:  4299 
  • 13b Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 13c Connon SJ. Chem. Eur. J.  2006,  12:  5418 
  • 14 Procedure for the Synthesis of Catalysts 1 To a solution of amino alcohol (0.5 mmol) in CH2Cl2 (2 mL) was added dropwise 3,5-bis(trifluoromethyl)phenyl isothiocyanate (92 µL, 0.5 mmol) at 0 °C under N2. After stirring the reaction mixture for 3-5 h at r.t., the solvent was removed under reduced pressure and residue was purified by flash chromatography (PE-Et2O, 90:10) to provide 1.Spectral data for catalyst 1a: white solid, mp 145-147 °C; [α]D 20 -55.0 (c 0.30, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.56 (br s, 1 H), 7.80 (br s, 2 H), 7.67 (s, 1 H), 7.50-7.27 (m, 5 H), 6.91 (br s, 1 H), 5.02 (br s, 1 H), 4.18 (br s, 1 H), 3.65-3.56 (m, 2 H), 3.00 (br s, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 180.7, 140.5, 138.9, 132.8, 128.9, 128.6, 125.7, 123.8, 119.4, 76.2, 52.1. IR (neat): 3261, 3066, 1538, 1385, 1278, 1133, 700, 682 cm-1. MS (EI): m/z (%) = 271 (100), 213 (37), 202 (58), 163 (30).Catalyst 1d: white solid, mp 66-68 °C; [α]D 19 -53.8 (c 0.34, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.5 (br s, 1 H), 7.70-7.20 (m, 14 H), 6.88 (br s, 1 H), 5.64 (br s, 1 H), 2.95 (br s, 1 H), 1.15 (br s, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 178.8, 144.3, 138.4, 133.0, 128.9, 128.7, 127.7, 127.5, 126.0, 125.7, 125.4, 125.2, 123.5, 119.3, 81.3, 56.7, 14.9. IR (neat): 3369, 3062, 1528, 1449,1382, 1278, 1176, 1136, 701, 682 cm-1. MS (EI): m/z (%) = 271 (100), 229 (42), 213 (72), 202 (76), 182 (48), 163 (50).Catalyst 1e: white solid, mp 66-68 °C; [α]D 20 -16.7 (c 0.32, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.64 (br s, 1 H), 7.71-7.18 (m, 12 H), 6.92-6.87 (m, 1 H), 5.59 (br s, 1 H), 2.84 (br s, 1 H), 2.04 (br s, 1 H), 1.03 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 180.6, 144.9, 144.4, 138.4, 133.9, 128.5, 128.1, 127.3, 125.6, 125.5, 125.3, 125.1, 123.8, 122.8, 119.3, 83.1, 63.4, 29.7, 23.4, 18.4. IR (neat): 3350, 3063, 2963, 1562, 1449, 1277, 1381, 1176, 1135, 703, 683 cm-1. MS (EI): m/z (%) = 271 (100), 229 (40), 202 (34), 182 (34), 163 (64).Catalyst 1f: white solid, mp 81-83 °C; [α]D 22 -251.7 (c 0.34, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.00 (br s, 1 H), 7.68-7.59 (m, 3 H), 7.42-7.26 (m, 5 H), 7.15-7.05 (m, 8 H), 7.00-6.95 (m, 2 H), 6.46 (br s, 1 H), 2.76 (br s, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.3, 143.6, 143.4, 138.3, 136.3, 133.2, 128.9, 128.7, 128.1, 127.9, 127.3, 125.9, 125.5, 123.7, 119.6, 81.7, 64.7. IR (neat): 3255, 3062, 1518, 1449, 1381, 1278, 1176, 1137, 699, 682 cm-1. MS (EI): m/z (%) = 271 (100), 213 (34), 202 (28), 163 (42).Catalyst 1g: white solid, mp 79-82 °C; [α]D 21 -75.1 (c 0.33, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.03 (br s, 1 H), 7.64-7.15 (m, 15 H), 7.03-7.00 (m, 2 H), 6.78 (s, 1 H), 5.91 (br s, 1 H), 3.17 (br s, 1 H), 2.85-2.78 (m, 2 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.5, 144.2, 138.0, 131.9, 129.5, 128.7, 128.6, 127.5, 127.4, 126.9, 126.4, 125.6, 125.2, 124.0, 122.7, 119.3, 81.8, 60.2, 37.4. IR (neat): 3320, 3063, 1539, 1449, 1383, 1277, 1181, 1135, 701, 681 cm-1. MS (ESI+): m/z (%) = 575 (70) [M + H+], 557 (100) [M - 17].Catalyst 1h: white solid, mp 49-51 °C; [α]D 21 -8.50 (c 0.30, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.08 (br s, 1 H), 7.67 (s, 1 H), 7.33-7.14 (m, 12 H), 5.84 (br s, 1 H), 5.38 (br s, 1 H), 4.90-4.85 (m, 1 H), 3.93 (d, J = 9.9 Hz, 1 H), 1.21 (d, J = 6.4 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 179.5, 141.5, 141.1, 138.0, 133.2, 129.0, 128.9, 128.6, 128.3, 128.2, 127.9, 127.2, 127.1, 124.3, 122.7, 119.9, 58.1, 54.2, 19.6. IR (neat): 3063, 1532, 1382, 1279, 1176, 1135, 888, 752, 702 cm-1. MS (ESI+): m/z (%) = 483 (100) [M + H+]
  • 15 Herrera RP. Sgarzani V. Bernardi L. Ricci A. Angew. Chem. Int. Ed.  2005,  44:  6576 
  • 16a Lattanzi A. Org. Lett.  2005,  7:  2579 
  • 16b Lattanzi A. Adv. Synth. Catal.  2006,  348:  339 
  • 16c Lattanzi A. Russo A. Tetrahedron  2006,  62:  12264 
  • 18a Markó IE. Giles PR. Hindley NJ. Tetrahedron  1997,  53:  1015 
  • 18b Aggarwal VK. Mereu A. Chem. Commun.  1999,  2311 
  • 18c Leadbeater NE. van der Pol CJ. J. Chem. Soc., Perkin Trans. 1  2001,  2831 
  • 18d Aggarwal VK. Emme I. Fulford SY. J. Org. Chem.  2003,  68:  692 
  • 20 A similar outcome for aliphatic aldehydes was observed in organocatalyzed MBH reaction, see ref. 5a,b, 8, and 9
  • 21 The corresponding products are generally obtained in moderate yields and ee, see ref. 5a,b, 8, and 9
  • 22 The best result achieved up to now for the allylic alcohol obtained when reacting benzaldehyde and 2-cyclohexen-1-one is 65% yield and 77% ee, see ref. 8b
17

The following solvents were employed at a concentration of 2 M with respect to the aldehyde: toluene, MeOH, MeCN, THF, CH2Cl2.

19

Typical Procedure for the MBH Reaction To a capped vial containing catalyst 1f (22.4 mg, 0.04 mmol) was added 2-cyclohexen-1-one (78 mL, 0.8 mmol) and Et3N (4.4 mL, 0.04 mmol). The mixture was stirred for 5 min and then the aldehyde was added (0.2 mmol). After 100-147 h, the reaction was directly purified by flash silica gel chromatography eluting with PE-Et2O mixtures (98:2 to 80:20) to give a clear oil. Spectral data of allylic alcohols matched those reported in the literature.2,3,5