Synlett 2021; 32(17): 1675-1682
DOI: 10.1055/a-1536-2738
synpacts

Rhodium-Catalyzed Direct Allylation of Simple Arenes by Using Gem-Difluorinated Cyclopropanes as Allyl Surrogates

Zhong-Tao Jiang
,
Yaxin Zeng
,
Ying Xia
Start-up funding from Sichuan University (YJ201965), National Natural Science Foundation of China (22001180), Thousand Young Talents Program of China (15-YINGXIA).


Abstract

Gem-difluorinated cyclopropanes have become an important type of allyl surrogate in transition-metal-catalyzed ring-opening processes, as demonstrated recently through various important advances, especially with palladium catalysis. The versatile fluorinated allyl species generated in this way from gem-difluorinated cyclopropanes exhibit unique advantages compared with conventional allyl sources. By using gem-difluorinated cyclopropanes as allyl surrogates, we achieved a direct allylation of simple arenes through rhodium catalysis under mild conditions. This transformation permits directing-group-free allylation of simple arenes, including electron-neutral, electron-rich, and electron-deficient ones. Here, we give a brief introduction to this area and we discuss our thoughts regarding our recent work and its design.

1 Introduction

2 Our Design

3 Condition Optimization and Substrate Scope

4 Applications in Synthesis

5 Mechanistic Discussions

6 Conclusion and Outlook



Publication History

Received: 09 June 2021

Accepted after revision: 24 June 2021

Accepted Manuscript online:
24 June 2021

Article published online:
15 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Dolbier WR, Battiste MA. Chem. Rev. 2003; 103: 1071
    • 4a Fedoryński M. Chem. Rev. 2003; 103: 1099
    • 4b Wang F, Luo T, Hu J, Wang Y, Krishnan HS, Jog PV, Ganesh SK, Prakash GK. S, Olah GA. Angew. Chem. Int. Ed. 2011; 50: 7153
    • 4c Song X, Xu C, Wang M. Tetrahedron Lett. 2017; 58: 1806

      For selected examples, see:
    • 5a Isogai K, Nishizawa N, Saito T, Sakai J.-i. Bull. Chem. Soc. Jpn. 1983; 56: 1556
    • 5b Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057
    • 5c Banik SM, Mennie KM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 9152
    • 5d Specklin S, Fenneteau J, Subramanian P, Cossy J. Chem. Eur. J. 2018; 24: 332
  • 6 Xu J, Ahmed E.-A, Xiao B, Lu Q.-Q, Wang Y.-L, Yu C.-G, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 8231
  • 7 Ahmed E.-AM. A, Suliman AM. Y, Gong T.-J, Fu Y. Org. Lett. 2019; 21: 5645
  • 8 Ahmed E.-AM. A, Suliman AM. Y, Gong T.-J, Fu Y. Org. Lett. 2020; 22: 1414
  • 9 Suliman AM. Y, Ahmed E.-AM. A, Gong T.-J, Fu Y. Org. Lett. 2021; 23: 3259 . Very recently, the same group reported a similar three-component reaction using alkenes instead of alkynes, see: Suliman, A. M. Y.; Ahmed, E.-A. M. A.; Gong, T.-J.; Fu, Y. Chem. Commun. 2021, 57, 6400
  • 10 Ni J, Nishonov B, Pardaev A, Zhang A. J. Org. Chem. 2019; 84: 13646
  • 11 Fu Z, Zhu J, Guo S, Lin A. Chem. Commun. 2021; 57: 1262
  • 12 Wenz J, Rettenmeier CA, Wadepohl H, Gade LH. Chem. Commun. 2016; 52: 202
  • 13 Liu H, Li Y, Wang D.-X, Sun M.-M, Feng C. Org. Lett. 2020; 22: 8681
  • 14 Lv L, Li C.-J. Angew. Chem. Int. Ed. 2021; 60: 13098
    • 15a Ni G, Zhang Q.-J, Zheng Z.-F, Chen R.-Y, Yu D.-Q. J. Nat. Prod. 2009; 72: 966
    • 15b Hassam M, Taher A, Arnott GE, Green IR, van Otterlo WA. L. Chem. Rev. 2015; 115: 5462
    • 15c Thuy NT. T, Lee J.-E, Yoo HM, Cho N. J. Nat. Prod. 2019; 82: 3025
    • 16a Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 12595
    • 16b Burman JS, Blakey SB. Angew. Chem. Int. Ed. 2017; 56: 13666
    • 17a Trost BM, Toste FD. J. Am. Chem. Soc. 1998; 120: 815
    • 17b Fernández I, Hermatschweiler R, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2006; 45: 6386
    • 17c Niggemann M, Meel MJ. Angew. Chem. Int. Ed. 2010; 49: 3684
    • 17d Price CC. Org. React. (Hoboken, NJ, USA) 2011; DOI: 10.1002/0471264180.or003.01.
    • 17e Discolo CA, Graves AG, Deardorff DR. J. Org. Chem. 2017; 82: 1034
    • 17f Yurino T, Ece H, Ohkuma T. Asian J. Org. Chem. 2020; 9: 557

      For selected examples of cross-coupling reactions between aryl and allyl fragments, see:
    • 18a Pigge FC. Synthesis 2010; 1745
    • 18b Science of Synthesis: Cross Coupling and Heck-Type Reactions., Vol. 1, C–C Cross Coupling Using Organometallic Partners, Chap. 1.1. Molander GA. Thieme; Stuttgart: 2013
    • 18c Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
    • 18d Han B, Shi Z, He H, Zhang X. Youji Huaxue 2021; 41: 695 ; (in Chinese)

      For selected examples of transition-metal-catalyzed ortho-allylations, see:
    • 19a Zeng R, Fu C, Ma S. J. Am. Chem. Soc. 2012; 134: 9597
    • 19b Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
    • 19c Wang H, Schröder N, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
    • 19d Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 19e Zell D, Bu Q, Feldt M, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
    • 19f Trita AS, Biafora A, Drapeau MP, Weber P, Gooßen LJ. Angew. Chem. Int. Ed. 2018; 57: 14580
    • 19g Liao G, Li B, Chen H.-M, Yao Q.-J, Xia Y.-N, Luo J, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 17151
    • 19h Chen L, Quan H, Xu Z, Wang H, Xia Y, Lou L, Yang W. Nat. Commun. 2020; 11: 2151

      For selected examples of transition-metal-catalyzed meta-allylations, see:
    • 20a Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
    • 20b Achar TK, Zhang X, Mondal R, Shanavas MS, Maiti S, Maity S, Pal N, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10353
    • 20c Bag S, Surya K, Mondal A, Jayarajan R, Dutta U, Porey S, Sunoj RB, Maiti D. J. Am. Chem. Soc. 2020; 142: 12453
    • 20d Gholap A, Bag S, Pradhan S, Kapdi AR, Maiti D. ACS Catal. 2020; 10: 5347

    • For selected reviews, see:
    • 20e Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
    • 20f Dutta S, Bhattacharya T, Werz DB, Maiti D. Chem 2020; 7: 555
    • 20g Zhao S, Li C, Xu B, Liu H. Youji Huaxue 2020; 40: 1549 ; (in Chinese)
    • 21a Yao T, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2011; 50: 2990
    • 21b Fan S, Chen F, Zhang X. Angew. Chem. Int. Ed. 2011; 50: 5918
    • 21c Yu Y.-B, Fan S, Zhang X. Chem. Eur. J. 2012; 18: 14643
    • 21d Zheng J, Breit B. Org. Lett. 2018; 20: 1866
  • 22 A Pd-catalyzed C–H allylation of polyfluoroarenes with gem-difluorinated cyclopropanes as the allyl sources was recently developed, see: Zhou P.-X, Yang X, Wang J, Ge C, Feng W, Liang Y.-M, Zhang Y. Org. Lett. 2021; 23: 4920
    • 23a Ying C.-H, Duan W.-L. Org. Chem. Front. 2014; 1: 546
    • 23b Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
  • 25 Jiang Z.-T, Huang J, Zeng Y, Hu F, Xia Y. Angew. Chem. Int. Ed. 2021; 60: 10626
  • 26 This conclusion is also supported by the following two facts. (1) Our reaction is base-free and a release of HF is observed in the reaction, demonstrating that the reaction proceeds under acidic conditions. In comparison, CMD-type C–H activation processes usually occur under basic conditions. (2) Electron-rich arenes are more active, giving the allylated products at ambient temperatures, whereas electron-deficient arenes require elevated temperatures.