Subscribe to RSS
DOI: 10.1055/a-1608-5069
Transition-Metal-Catalyzed Hydroxylation Reaction of Aryl Halide for the Synthesis of Phenols
This research is supported by the National Natural Science Foundation of China (Grant Number 21871171), Natural Science Foundation of Shaanxi Province (Grant Number 2019JM-043), and the Fundamental Research Funds for the Central Universities (Grant Number 2020CBLY009).
Abstract
Phenols are important components of pharmaceuticals, biologically active natural products, and materials. Here, we briefly discuss recent advances in catalytic hydroxylation reactions for the synthesis of phenols, with particular attention to our recent work. H2O is proved to be an efficient hydroxide reagent in converting (hetero)aryl halides into the corresponding phenols under synergistic organophotoredox and nickel catalysis. Aryl bromides as well as less reactive aryl chlorides show high reactivity in this catalytic system. This methodology can be applied to the efficient synthesis of diverse phenols and allows the hydroxylation of multifunctional pharmaceutically relevant aryl halides.
1 Introduction
2 Representative Methods for Transition-Metal-Catalyzed Hydroxylation of (Hetero)Aryl Halides
3 Organophotoredox/Ni Dual Catalytic Hydroxylation of Aryl Halides with Water
4 Summary and Outlook
Publication History
Received: 02 August 2021
Accepted after revision: 24 August 2021
Accepted Manuscript online:
24 August 2021
Article published online:
01 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Rappoport Z. The Chemistry of Phenols . Wiley-VCH; Weinheim: 2003
- 1b Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. Angew. Chem. Int. Ed. 2011; 50: 586
- 1c Rahim M, Kristufek SL, Pan S.-J, Richardson JJ, Caruso F. Angew. Chem. Int. Ed. 2019; 58: 1904
- 2a Arpe H.-J. Industrial Organic Chemistry, 5th ed. Wiley-VCH; Weinheim: 2010: 359-374
- 2b Liu Y, Liu S, Xiao Y. Beilstein J. Org. Chem. 2017; 13: 589
- 3a Willis MC. Angew. Chem. Int. Ed. 2007; 46: 3402
- 3b Alonso DA, Nájera C, Pastor IM, Yus M. Chem. Eur. J. 2010; 16: 5274
- 3c Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
- 4 Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
- 5 Chen G, Chan AS. C, Kwong FY. Tetrahedron Lett. 2007; 48: 473
- 6 Schulz T, Torborg C, Schäffner B, Huang J, Zapf A, Kadyrov R, Börner A, Beller M. Angew. Chem. Int. Ed. 2009; 48: 918
- 7a Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
- 7b Dumrath A, Wu X, Neumann H, Spannenberg A, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2010; 49: 8988
- 8 Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
- 9 Xia S, Gan L, Wang K, Li Z, Ma D. J. Am. Chem. Soc. 2016; 138: 13493
- 10a Fier PS, Maloney KM. Angew. Chem. Int. Ed. 2017; 56: 4478
- 10b Fier PS, Maloney KM. Org. Lett. 2017; 19: 3033
- 11 Song Z.-Q, Wang D.-H. Org. Lett. 2020; 22: 8470
- 12a Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
- 12b Liu Y.-Y, Liang D, Lu L.-Q, Xiao W.-J. Chem. Commun. 2019; 55: 4853
- 13 Only two examples with medium yields of phenols were reported in ref. 12a.
- 14 Yang L, Huang Z, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2018; 57: 1968
- 15a Dempsey JL, Esswein AJ, Manke DR, Rosenthal J, Soper JD, Nocera DG. Inorg. Chem. 2005; 44: 6879
- 15b Dogutan DK, McGuire RJr, Nocera DG. J. Am. Chem. Soc. 2011; 133: 9178
- 16a Ulrich G, Ziesseland R, Harriman A. Angew. Chem. Int. Ed. 2008; 47: 1184
- 16b Goze C, Ulrich G, Mallon LJ, Allen BD, Harriman A, Ziessel R. J. Am. Chem. Soc. 2006; 128: 10231
- 17a Liu RY, Dennis JM, Buchwald SL. J. Am. Chem. Soc. 2020; 142: 4500
- 17b Li G, Yang L, Liu J.-J, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 5230
- 17c Baumgartner LM, Dennis JM, White NA, Buchwald SL, Jensen KF. Org. Process Res. Dev. 2019; 23: 1594
- 17d Dennis JM, White NA, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 4721
- 18 Yang L, Lu H.-H, Lai C.-H, Li G, Zhang W, Cao R, Liu F, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2020; 59: 12714
- 19 Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
- 20 Sun R, Qin Y, Ruccolo S, Schnedermann C, Costentin C, Nocera DG. J. Am. Chem. Soc. 2019; 141: 89
- 21 Till NA, Tian L, Dong Z, Scholes GD, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 15830
For leading examples for water activation by the hangman construct, see:
All of these C–O/C–N coupling reactions necessitate the use of strong inorganic bases or metal alkoxides, which brings about solubility and compatibility issues and related operational challenges. For Ni-catalyzed C–N coupling using soluble organic bases, see:
Pd-catalyzed amination reactions using soluble organic bases, see: