Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(07): 846-849
DOI: 10.1055/a-1934-1299
DOI: 10.1055/a-1934-1299
cluster
Chemical Synthesis and Catalysis in India
Strain-Induced Regioselective Ring-Opening Cross-Metathesis of Hybrid Cage Propellane Containing both Bicyclo[2.2.1]heptene and Bicyclo[2.2.2]octene Units
We thank the Aeronautics Research and Development Board (Grant: ARDB/01/1041849/M/1), New Delhi, for a research grant. G.M. gratefully acknowledges the University Grants Commission (UGC), India for the award of a senior research fellowship.
Abstract
Herein, we report strain-driven regioselective tandem ring-opening cross-metathesis (ROCM) of a linearly fused cage system that contains both bicyclo[2.2.1]heptene and bicyclo[2.2.2]octene units fused to the same cage system. The synthesis of novel cage propellane involves Diels–Alder cycloaddition and [2+2] photocycloaddition as key steps.
Keywords
Diels–Alder reaction - [2+2] photocycloaddition - Kushner’s dione - ring-opening cross-metathesis - Grubbs catalystSupporting Information
- Supporting information for
this article is available online at https://doi.org/10.1055/a-1934-1299.
- Supporting Information
- CIF File
Publication History
Received: 20 June 2022
Accepted after revision: 30 August 2022
Accepted Manuscript online:
30 August 2022
Article published online:
07 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Hartline DR, Zeller M, Uyeda C. J. Am. Chem. Soc. 2017; 139: 13672
- 2 Huybrechts G, Rigaux D, Vankeerberghen J, Mele BV. Int. J. Chem. Kinet. 1980; 12: 253
- 3a Wiberg KB. Angew. Chem. Int. Ed. Engl. 1986; 25: 312
- 3b Advance in Strained and Interesting Organic Molecules, Vol. 8. Halton B. Jai Press Inc; Stamford: 2000
- 3c North M. Exploiting the Strain in [2.2.1]Bicyclic Systems. In Polymer and Synthetic Organic Chemistry, Vol. 8. Halton B. JAI Press Inc; Stamford: 2000: 145
- 4 Hren J, Polanc S, Kocevar M. ARKIVOC 2008; (i): 209
- 5 Magnus P, Pyne AH, Hobson L. Tetrahedron Lett. 2000; 41: 2077
- 6 Asaoka M, Ishibashi K, Yanagida N, Takei H. Tetrahedron Lett. 1983; 24: 5127
- 7 Deutsch HM, Gelbaum LT, McLaughlin M, Fleischmann TJ, Earnhart LL, Haugwitz RD, Zalkow LH. J. Med. Chem. 1986; 29: 2164
- 8a Geldenhuys WJ, Malan SF, Bloomquist JR, Marchand AP, Schyf CJ. V. Med. Res. Rev. 2005; 25: 21
- 8b Wilkinson SM, Gunosewoyo H, Barron ML, Boucher A, McDonnell M, Turner P, Morrison DE, Bennett MR, McGregor IS, Rendina LM, Kassiou M. ACS Chem. Neurosci. 2014; 5: 335
- 8c Onajole OK, Coovadia Y, Kruger HG, Maguire GE. M, Pillay M, Govender T. Eur. J. Med. Chem. 2012; 54: 1
- 8d Joubert J, Geldenhuys WJ, Schyf CJ. V, Oliver DW, Kruger HG, Govender T, Malan SF. ChemMedChem 2012; 7: 375
- 9a Marchand AP, Chong H.-S, Ganguly B. Tetrahedron: Asymmetry 1999; 10: 4695
- 9b Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
- 10a Kaszynski P, Friedli AC, Michl J. J. Am. Chem. Soc. 1992; 114: 601
- 10b Mahkam M, Sanjani NS. Polym. Int. 2000; 49: 260
- 10c Mahkam M, Assadi M, Mohammadzadeh R. Macromol. Res. 2006; 14: 34
- 11a Wu Q, Tan L, Hang Z, Wang J, Zhang Z, Zhu W. RSC Adv. 2015; 5: 93607
- 11b Wu Q, Zhu W, Xiao H. RSC Adv. 2014; 4: 34454
- 11c Deshmukh MB, Borse AU, Mahulikar PP, Dalal DS. Org. Process Res. Dev. 2016; 20: 1363
- 11d Zhang C, Shu Y, Huang Y, Zhao X, Dong H. J. Phys. Chem. B 2005; 109: 8978
- 11e Owens FJ. J. Mol. Struct. 1999; 460: 137
- 11f Rice BM, Sahu S, Owens FJ. J. Mol. Struct. 2002; 583: 69
- 11g Lal S, Mallick L, Rajkumar S, Oommen OP, Reshmi S, Kumbhakarna N, Chowdhury A, Namboothiri IN. N. J. Mater. Chem. A 2015; 3: 22118
- 12a Mehta G, Murthy AN, Reddy DS, Reddy AV. J. Am. Chem. Soc. 1986; 108: 3443
- 12b Mehta G, Rao KS. Tetrahedron Lett. 1983; 24: 809
- 12c Marchand AP, Suri SC, Earlywine AD, Powel DR, Helm DV. D. J. Org. Chem. 1984; 49: 670
- 12d D’yakonov VA, Trapeznikova OA, Meijere AD, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
- 12e Kotha S, Ansari S, Cheekatla SR, Dipak MK. Tetrahedron 2020; 76: 130856
- 12f Kotha S, Krishna NG, Halder S, Mishra S. Org. Biomol. Chem. 2011; 9: 5597
- 12g Kotha S, Meshram M, Khedkar P, Banergee S, Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
- 13 Morgan JP, Morrill C, Grubbs RH. Org. Lett. 2002; 4: 67
- 14 Kushner AS. Tetrahedron Lett. 1971; 35: 3275
- 15a Pandey B, Zope UR, Ayyangar NR. Synth. Commun. 1989; 19: 585
- 15b Coxon JM, O’Connell MJ, Steel PJ. J. Org. Chem. 1987; 52: 4727
- 15c Coxon JM, Fong ST, Lundie K, McDonald DQ, Steel PJ. Tetrahedron 1994; 50: 13037
- 16a Chatterjee AK, Choi TL, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
- 16b Grubbs RH. Tetrahedron 2004; 60: 7117
- 17 Berlin JM, Goldberg SD, Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 7591
- 18 Synthesis of Diels–Alder Adduct 7: Caged dione 8 (1.2 g, 5.36 mmol) and norbornadiene (5–7 equiv) were dissolved in toluene (2–4 mL) in a sealed pressure tube and heated to 240–250 °C for 8–10 h. After completion of the reaction (TLC monitoring), the solvent was evaporated under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (0.1–0.5%, EtOAc/petroleum ether) to afford 7 as a white crystalline solid. Yield: 1.18 g (70%); Rf = 0.60 (15% EtOAc /petroleum ether); mp 230–232 °C. 1H NMR (400 MHz, CDCl3): δ = 6.33–6.30 (m, 2 H), 6.07 (d, J = 1.0 Hz, 2 H), 2.78–2.76 (m, 4 H), 2.63 (s, 2 H), 2.53 (d, J = 1.5 Hz, 4 H), 2.40 (d, J = 8.6 Hz, 1 H), 2.14 (s, 2 H), 1.89 (d, J = 11.2 Hz, 1 H), 1.73 (d, J = 11.2 Hz, 1 H), 0.86 (dd, J = 8.7, 0.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 212.7, 139.4, 133.7, 55.9, 55.8, 46.4, 43.4, 42.6, 41.7, 41.1, 38.2, 35.5. HRMS (ESI): m/z [M + H]+ calcd for C22H21O2: 317.1541; found: 317.1540.