Synlett 2024; 35(03): 357-361 DOI: 10.1055/a-2117-9803
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations
Effects of Electron-Donor and Counter-Cation in Photoinduced Deboronative and Decarboxylative Aryl Radical Generation Using Two-Molecule Photoredox Catalysts
Ryoga Hashimoto
,
Toshiki Furutani
,
,
This work was supported by the Asahi Glass Foundation, Continuation Grants for Outstanding Projects.
Abstract
In this study, we investigated the effects of electron-donors and counter-cations on the visible-light-induced deboronation and decarboxylation of arylboronic acid derivatives and benzoic acids using two-molecule photoredox catalysts. Different efficiencies in aryl radical generation were observed upon replacing the electron-donor and counter-cation. The rate of photoinduced deboronation of arylboronic acid derivatives strongly depends on the substituent, whereas the influence of counter-cation (Na+ and K+ ) was relatively minor. In the case of the benzoate ion derived from benzoic acid, the effect of both substituent and counter-cation decreases because of the complex mechanism. Additionally, the dependence of the oxidation ability of the radical cation on the electron-donor suggests the possibility of roughly estimating the oxidation potentials of the arylborate and benzoate ions.
Key words
two-molecule photoredox catalyst -
effect of electron-donor -
effect of counter-cation -
photoinduced deboronation -
photoinduced decarboxylation -
aryl radical -
arylboronic acid ester -
benzoic acid
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2117-9803.
Supporting Information
Publication History
Received: 31 May 2023
Accepted after revision: 26 June 2023
Accepted Manuscript online: 26 June 2023
Article published online: 17 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Hammer SG,
Heinrich MR.
In
Comprehensive Organic Synthesis II , 2nd ed. Elsevier; Amsterdam: 2014: 495-516
1b
Wang X,
Studer A.
Acc. Chem. Res. 2017; 50: 1712
1c
Voica A.-F,
Mendoza A,
Gutekunst WR,
Fraga JO,
Baran PS.
Nat. Chem. 2012; 4: 629
1d
Barton DH. R,
Lacher B,
Zard SZ.
Tetrahedron Lett. 1985; 26: 5939
1e
Hofmann J,
Heinrich MR.
Tetrahedron Lett. 2016; 57: 4334
For the use of aryl halides as a reactant, see:
2a
Curran DP,
Kim D,
Liu HT,
Shen W.
J. Am. Chem. Soc. 1988; 110: 5900
2b
Yanagisawa S,
Ueda K,
Taniguchi T,
Itami K.
Org. Lett. 2008; 10: 4673
2c
Shirakawa E,
Itoh K,
Higashino T,
Hayashi T.
J. Am. Chem. Soc. 2010; 132: 15537
2d
Sun CL,
Li H,
Yu DG,
Yu M,
Zhou X,
Lu XY,
Huang K,
Zheng SF,
Li BJ,
Shi ZJ.
Nat. Chem. 2010; 2: 1044
For the use of aryl carboxylic acids as a reactant, see:
3a
Kan J,
Huang S,
Lin J,
Zhang M,
Su W.
Angew. Chem. Int. Ed. 2015; 54: 2199
3b
Perry GJ. P,
Quibell JM,
Panigrahi A,
Larrosa I.
J. Am. Chem. Soc. 2017; 139: 11527
For the use of aryl boronic acids as a reactant, see:
4a
Demir AS,
Findik H.
Tetrahedron 2008; 64: 6196
4b
Seiple IB,
Su S,
Rodriguez RA,
Gianatassio R,
Fujiwara Y,
Sobel AL,
Baran PS.
J. Am. Chem. Soc. 2010; 132: 13194
4c
Dickschat A,
Studer A.
Org. Lett. 2010; 12: 3972
4d
Yan G,
Yang M,
Wu X.
Org. Biomol. Chem. 2013; 11: 7999
5 For the use of aryl triflates as a reactant, see:
Liu W,
Yang X,
Gao Y,
Li C.-J.
J. Am. Chem. Soc. 2017; 139: 8621
For the use of aryl diazonium salts as a reactant, see:
6a
Galli C.
Chem. Rev. 1988; 88: 765
6b
Hari DP,
Schroll P,
König B.
J. Am. Chem. Soc. 2012; 134: 2958
7a
Ghosh I,
Marzo L,
Das A,
Shaikh R,
König B.
Acc. Chem. Res. 2016; 49: 1566
7b
Majek M,
Wangelin AJ.
Acc. Chem. Res. 2016; 49: 2316
7c
Candish L,
Freitag M,
Gensch T,
Glorius F.
Chem. Sci. 2017; 8: 3618
7d
Candish L,
Teders M,
Glorius F.
J. Am. Chem. Soc. 2017; 139: 7440
7e
Chen TQ,
Pedersen PS,
Dow NW,
Fayad R,
Hauke CE,
Rosko MC,
Danilov EO,
Blakemore DC,
Dechert-Schmitt A.-M,
Knauber T,
Castellano FN,
MacMillan DW. C.
J. Am. Chem. Soc. 2022; 144: 8296
8a
Yoshimi Y.
J. Photochem. Photobiol., A 2017; 42: 116
8b
Yoshimi Y.
Photochemistry 2022; 49: 354
9a
Iwata Y,
Tanaka Y,
Kubosaki S,
Morita T,
Yoshimi Y.
Chem. Commun. 2018; 54: 1257
9b
Kubosaki S,
Takeuchi H,
Iwata Y,
Tanaka Y,
Osaka K,
Yamawaki M,
Morita T,
Yoshimi Y.
J. Org. Chem. 2020; 85: 5362
9c
Tajimi Y,
Nachi Y,
Inada R,
Yamawaki M,
Ohkubo K,
Morita T,
Yoshimi Y.
J. Org. Chem. 2022; 87: 7405
9d
Yamawaki M,
Hashimoto R,
Kawabata Y,
Ichihashi M,
Nachi Y,
Inari R,
Sakamoto C,
Morita T,
Yoshimi Y.
Eur. J. Org. Chem. 2022; e202201225
10a
Fukuzumi S,
Ohkubo K.
Org. Biomol. Chem. 2014; 12: 6059
10b
Zuo Z,
MacMillan DW. C.
J. Am. Chem. Soc. 2014; 136: 5257
11
Handbook of Photochemistry , 3rd ed.
Montalti M,
Credi A,
Prodi L,
Gandolfi MT.
CRC Press; Boca Raton: 2006
12
Guirado G,
Fleming CN,
Lingenfelter TG,
Williams ML,
Zuilhof H,
Dinnocenzo JP.
J. Am. Chem. Soc. 2004; 126: 14086
13
Mukherjee S,
Maji B,
Tlahuext-Aca A,
Glorius F.
J. Am. Chem. Soc. 2016; 138: 16200