Subscribe to RSS
DOI: 10.1055/a-2351-5090
On the Existence and Relevance of Copper(III) Fluorides in Oxidative Trifluoromethylation
Financial support from the Centre National de la Recherche Scientifique (CNRS), the Université Toulouse III - Paul Sabatier, and the Agence Nationale de la Recherche (ANR-JCJC-20-CE07-0023, acronym Ni4Rf) is gratefully acknowledged. D.J-S thanks the ANR for postdoctoral funding.
Abstract
Numerous reports invoke CuIII–F intermediates engaging in oxidative cross-couplings mediated by low/mid-valent copper and formal sources of ‘F+’ oxidants. These elusive and typically instable CuIII fluorides have been rarely characterized or spectroscopically identified, making their existence and participation within catalytic cycles somehow questionable. We have authenticated a stable organocopper(III) fluoride that undergoes Csp–CF3 bond formation upon addition of silyl-capped alkynes following a 2 e– CuIII/CuI redox shuttle. This finding strongly supports the intermediacy of CuIII fluorides in C–C coupling. We review herein the state of the art about well-defined CuIII fluorides enabling cross-coupling reactions.
1 Introduction
2 Brief History of Coupling-Competent CuIII Fluorides
3 Design of an Isolable – yet Reactive – Organocopper(III) Fluoride
4 Alkyne Trifluoromethylation: Scope and Mechanism
5 Extension to Aryl–CF3 and C–Heteroatom Couplings
6 Summary and Outlook
Key words
trifluoromethylation - organocopper(III) compounds - CuIII fluorides - oxidative cross-coupling - 2 e– redox shuttlePublication History
Received: 22 May 2024
Accepted after revision: 24 June 2024
Accepted Manuscript online:
24 June 2024
Article published online:
16 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chu L, Qing F.-L. J. Am. Chem. Soc. 2010; 132: 7262
- 1b Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
- 1c Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251
- 1d Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 2a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2b Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 1014
- 2c Honda T, Ojima I. Progress in Fluorine Science, The Curious World of Fluorinated Molecules. Seppelt K. Elsevier; Amsterdam: 2021: 241-276
- 3a Zhang K, Qiu X.-L, Huang Y, Qing F.-L. Eur. J. Org. Chem. 2012; 58
- 3b Luo D.-F, Xu J, Fu Y, Guo Q.-X. Tetrahedron Lett. 2012; 53: 2769
- 3c Weng Z, Li H, He W, Yao L.-F, Tan J, Chen J, Yuan Y, Huang K.-W. Tetrahedron 2012; 68: 2527
- 3d Wang X, Lin J, Zhang C, Xiao J, Zheng X. Chin. J. Chem. 2013; 31: 915
- 3e Serizawa H, Aikawa K, Mikami K. Chem. Eur. J. 2013; 19: 17692
- 3f Tresse C, Guissart C, Schweizer S, Bouhoute Y, Chany A.-C, Goddard M.-L, Blanchard N, Evano G. Adv. Synth. Catal. 2014; 356: 2051
- 3g Dubbaka SR, Nizalapur S, Atthunuri AR, Salla M, Mathew T. Tetrahedron 2014; 70: 2118
- 3h Deng X, Lin J, Zheng J, Xiao J. Chin. J. Chem. 2014; 32: 689
- 3i He L, Tsui GC. Org. Lett. 2016; 18: 2800
- 4a Senecal TD, Parsons A, Buchwald SL. J. Org. Chem. 2011; 76: 1174
- 4b Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
- 4c Zhang C.-P, Cai J, Zhou C.-B, Wang X.-P, Zheng X, Guc Y.-C, Xiao J.-C. Chem. Commun. 2011; 47: 9516
- 4d Liu T, Shen Q. Org. Lett. 2011; 13: 2342
- 4e Khan BA, Buba AE, Gooßen LJ. Chem. Eur. J. 2012; 18: 1577
- 4f Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
- 4g Liu T, Shao X, Wu Y, Shen Q. Angew. Chem. Int. Ed. 2012; 51: 540
- 4h Novák P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767
- 4i Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
- 4j Ye Y, Künzi SA, Sanford MS. Org. Lett. 2012; 14: 4979
- 4k Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
- 4l Li Y, Wu L, Neumann H, Beller M. Chem. Commun. 2013; 49: 2628
- 4m Presset M, Oehlrich D, Rombouts F, Molander GA. J. Org. Chem. 2013; 78: 12837
- 4n Zhang S.-L, Bie W.-F. Dalton Trans. 2016; 45: 17588
- 5 Nebra N, Grushin VV. J. Am. Chem. Soc. 2014; 136: 16998
- 6 Naumann D, Roy T, Tebbe K.-F, Crump W. Angew. Chem., Int. Ed. Engl. 1993; 32: 1482
- 7 Romine AM, Nebra N, Konovalov AI, Martin E, Benet-Buchholz J, Grushin VV. Angew. Chem. Int. Ed. 2015; 54: 2745
- 8 Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
- 9 Liu H, Shen Q. Coord. Chem. Rev. 2021; 439: 2139
- 10a Zhang S.-L, Bie W.-F. RSC Adv. 2016; 6: 70902
- 10b Zhang S.-L, Xiao C, Wan H.-X. Dalton Trans. 2018; 47: 4779
- 11a Motornov V, Klepetářová B, Beier P. Adv. Synth. Catal. 2023; 365: 2858
- 11b Motornov V, Procházka M, Alpuente N, Salvador P, Slavíček P, Klepetářová B, Ribas X, Beier P. ChemistryEurope 2024; 2: e202400004
- 12a Lu Z, Liu H, Liu S, Leng X, Lan Y, Shen Q. Angew. Chem. Int. Ed. 2019; 58: 8510
- 12b Tan X, Liu Z, Shen H, Zhang P, Zhang Z, Li C. J. Am. Chem. Soc. 2017; 139: 12430
- 12c Paeth M, Tyndall SB, Chen L.-Y, Hong J.-C, Carson WP. Liu X, Sun X, Liu J, Yang K, Hale EM, Tierney DL, Liu B, Cao Z, Cheng M.-J, Goddard WA. III, Liu W. J. Am. Chem. Soc. 2019; 141: 3153
- 13a Liu S, Liu H, Liu S, Lu Z, Lu C, Leng X, Lan Y, Shen Q. J. Am. Chem. Soc. 2020; 142: 9785
- 13b Yan W, Poore AT, Yin L, Carter S, Ho Y.-S, Wang C, Yachuw SC, Cheng Y.-H, Krause JA, Cheng M.-J, Zhang S, Tian S, Liu W. J. Am. Chem. Soc. 2024; 146: 15176
- 14a Wei Z, Zheng W, Wan X, Hu J. Angew. Chem. Int. Ed. 2023; 62: e202308816
- 14b Jover J, Maseras F. Chem. Commun. 2013; 49: 10486
- 14c Rovira M, Font M, Acuña-Parés F, Parella T, Luis JM, Lloret-Fillol J, Ribas X. Chem. Eur. J. 2014; 20: 1000
- 15 Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. Angew. Chem. Int. Ed. 2024; e202319412
- 16a Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
- 16b Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
- 16c Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691
- 17a Hickman AJ, Sanford MS. Nature 2012; 484: 177
- 17b Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
- 17c Day CS, Martin R. Chem. Soc. Rev. 2023; 52: 6601
- 18a Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem. Sci. 2010; 1: 326
- 18b Font M, Parella T, Costas M, Ribas X. Organometallics 2012; 31: 7976
- 18c Ribas X, Güell I. Pure Appl. Chem. 2014; 86: 345
- 19 Casitas A, Canta M, Solà M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
- 20a Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 10795
- 20b Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJ. H, Sanford MS. J. Am. Chem. Soc. 2020; 142: 7362
- 21 Mu X, Zhang H, Chen P, Liu G. Chem. Sci. 2014; 5: 275
- 22 Ye I, Sanford MS. J. Am. Chem. Soc. 2013; 135: 46
- 23a Furuya T, Ritter T. Org. Lett. 2009; 11: 2860
- 23b Furuya T, Strom AE, Ritter TT. J. Am. Chem. Soc. 2009; 131: 1662
- 23c Tang P, Ritter T. Tetrahedron 2011; 67: 4449
- 23d Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Angew. Chem. Ent. Ed. 2010; 49: 6821
- 23e Stenhagen IS. R, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V. Chem. Commun. 2013; 49: 1386
- 23f Fier PS, Hartwig JF. Science 2013; 342: 956
- 24a Demonti L, Joven-Sancho D, Nebra N. Chem. Rec. 2023; 23: e202300143
- 24b Leszczynski PJ, Jadwiszczak MJ, Grochala W. ChemistrySelect 2023; 8: e20230177
- 25a Ye Y, Schimler SD, Hanley PS, Sanford MS. J. Am. Chem. Soc. 2013; 135: 16292
- 25b Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Génicot C, Gouverneur V. Angew. Chem. Int. Ed. 2014; 53: 7751
- 25c Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJ. H. Org. Lett. 2016; 18: 5440
- 25d Gamache RF, Waldmann C, Murphy JM. Org. Lett. 2016; 18: 4522
- 25e Taylor NJ, Emer E, Preshlock S, Schedler M, Tredwell M, Verhoog S, Mercier J, Genicot C, Gouverneur V. J. Am. Chem. Soc. 2017; 139: 8267
- 25f Jordan AJ, Thompson PK, Sadighi JP. Org. Lett. 2018; 20: 5242
- 25g Ishihara K, Nishimura K, Yamakawa K. Angew. Chem. Int. Ed. 2020; 59: 17641
- 25h Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew. Chem. Int. Ed. 2012; 51: 10580
- 25i Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J. Am. Chem. Soc. 2014; 136: 9780
- 25j Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJ. H. Org. Lett. 2015; 17: 5780
- 25k Ichiishi N, Canty AJ, Yates BF, Sanford MS. Org. Lett. 2013; 15: 5134
- 26a Fleischer T, Hoppe R. Z. Anorg. Allg. Chem. 1982; 492: 76
- 26b Müller BG. Angew. Chem., Int. Ed. Engl. 1987; 26: 1081
- 27 Fier PS, Luo J, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2552
- 28a Bower JK, Cypcar AD, Henriquez B, Stieber SC. E, Zhang S. J. Am. Chem. Soc. 2020; 142: 8514
- 28b Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Chem. Catal. 2023; 3: 100491
- 29a Lee E, Hooker JM, Ritter T. J. Am. Chem. Soc. 2012; 134: 17456
- 29b Lee H, Börgel J, Ritter T. Angew. Chem. Int. Ed. 2017; 56: 6966
- 30a Gao D.-W, Vinogradova EV, Nimmagadda SK, Medina JM, Xiao Y, Suciu RM, Cravatt BF, Engle KM. J. Am. Chem. Soc. 2018; 140: 8069
- 30b Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
- 30c Zhao C, Li Y, Dong Y, Li M, Xia D, Gao S, Zhang Q, Liu Q, Guan W, Fu J. Nat. Commun. 2022; 13: 6297
- 30d Pinter EN, Sheldon ZS, Modak A, Cook SP. J. Org. Chem. 2023; 88: 4757
- 30e Wang X, Xue Y, Hu W, Shi L, Zhu X, Hao X.-Q, Song M.-P. Org. Lett. 2022; 24: 1055
- 30f Wang C.-Y, Qin Z.-Y, Huang Y.-L, Hou Y.-M, Jin R.-X, Li C, Wang X.-S. Org. Lett. 2020; 22: 4006
- 30g Liu Z, Xiao H, Zhang B, Shen H, Zhu L, Li C. Angew. Chem. Int. Ed. 2019; 58: 2510
- 31a Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
- 31b Kawakami T, Murakami K, Itami K. J. Am. Chem. Soc. 2015; 137: 2460
- 31c Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
- 31d Haines BE, Kawakami T, Kuwata K, Murakami K, Itami K, Musaev DG. Chem. Sci. 2017; 8: 988
- 31e Min Q.-Q, Yang J.-W, Pang M.-J, Ao G.-Z, Liu F. Org. Lett. 2020; 22: 2828
- 31f Modak A, Pinter EN, Cook SP. J. Am. Chem. Soc. 2019; 141: 18405
- 31g Zhang H, Sun X, Ma C, Li C, Ni Y, Yu Y, Xu Y.-Q, Ni S.-F, Cao Z.-Y. ACS Catal. 2024; 14: 3115
- 31h Qu S, Li X.-X, Li X, Wang L. ACS Catal. 2024; 14: 4318
- 31i Wang Q, Tian P, Cao Z.-Y, Zhang H, Jiang C. Adv. Synth. Catal. 2020; 362: 3851
- 31j Zhang HSong Y. Zhao J. Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
- 32a Teng X, Yu T, Shi J, Huang H, Wang R, Peng W, Sun K, Yang S, Wang W. Adv. Synth. Catal. 2023; 365: 3211
- 32b Lv X, Yang Y, Zhou L, Zeng X. Eur. J. Org. Chem. 2024; 27: e202400027
- 33 Bafaluy D, Muñoz-Molina JM, Funes-Ardoiz I, Herold S, de Aguirre AJ, Zhang H, Maseras F, Belderrain TR, Pérez PJ, Muñiz K. Angew. Chem. Int. Ed. 2019; 58: 891
- 34a Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288
- 34b Zhang Z, Stateman LH, Nagib DA. Chem. Sci. 2019; 10: 1207
- 35 Wang G, Li M, Leng X, Xue X, Shen Q. Chin. J. Chem. 2022; 40: 1924
- 36a Demonti L, Saffon-Merceron N, Mézailles N, Nebra N. Chem. Eur. J. 2021; 24: 15396
- 36b Joven-Sancho D, Demonti L, Martín A, Saffon-Merceron N, Nebra N, Baya M, Menjón B. Chem. Commun. 2023; 59: 4166
- 36c Demonti L, Joven-Sancho D, Saffon-Merceron N, Baya M, Nebra N. Chem. Eur. J. 2024; 27: e202400881
- 36d D’Accriscio F, Borja P, Saffon-Merceron N, Fustier-Boutignon M, Mézailles N, Nebra N. Angew. Chem. Int. Ed. 2017; 56: 12898
- 37a Joven-Sancho D, Baya M, Martín A, Orduna J, Menjón B. Angew. Chem. Int. Ed. 2024; 63: e202403108
- 37b Joven-Sancho D, Baya M, Martín A, Menjón B. Chem. Eur. J. 2018; 24: 13098
- 37c Joven-Sancho D, Baya M, Martín A, Orduna J, Menjón B. Angew. Chem. Int. Ed. 2021; 60: 26545
- 37d Pueyo J, Joven-Sancho D, Martín A, Menjón B, Baya M. Chem. Eur. J. 2024; 30: e202303937
- 38 Joven-Sancho D, Baya M, Martín A, Orduna J, Menjón B. Chem. Eur. J. 2020; 26: 4471
- 39 Pérez-Bitrián A, Martínez-Salvador S, Baya M, Casas JM, Martín A, Menjón B, Orduna J. Chem. Eur. J. 2017; 23: 6919
- 40 See ref. 12c and: Yan W, Carter S, Hsieh C.-T, Krause JA, Cheng M.-J, Zhang S, Liu W. J. Am. Chem. Soc. 2023; 145: 26152
- 41a Moissan H. Ann. Chim. Phys. 1890; 6: 266
- 41b Moissan H. C. R. Acad. Sci. 1888; 107: 260
- 41c Winston MS, Wolf WJ, Toste FD. J. Am. Chem. Soc. 2015; 137: 7921
- 41d Kumar R, Linden A, Nevado C. Angew. Chem. Int. Ed. 2015; 54: 14287
- 41e Genoux A, Biedrzycki M, Merino E, Rivera-Chao E, Linden A, Nevado C. Angew. Chem. Int. Ed. 2021; 60: 4164
- 42 The originally reported synthetic protocol of 1 (ref. 40) can be easily scaled up to nearly gram scale (ca. 900 mg of isolated 1) without any impact in the yield or purity of the isolated material.
- 43 Wang G, Li H, Leng X, Lu L, Shen Q. Chin. J. Chem. 2024; 42: 1107
- 44 Preliminary experiments confirmed the suitability of 1 to perform the trifluoromethylation of arylsilanes. These results will be reported separately.
- 45a Joven-Sancho D, Baya M, Falvello LR, Martín A, Orduna J, Menjón B. Chem. Eur. J. 2021; 27: 12796
- 45b Pérez-Bitrián A, Baya M, Casas JM, Falvello LR, Martín A, Menjón B. Chem. Eur. J. 2017; 23: 14918
- 46 Motornov V, Ackermann L. Chem. Eur. J. 2024; e202401791
- 47 Hoffmann R, Alvarez S, Mealli C, Falceto A, Cahill TJ. III, Zeng T, Manca G. Chem. Rev. 2016; 116: 8173
- 48a Grochala W, Hoffmann R. Angew. Chem. Int. Ed. 2001; 40: 2742
- 48b Grochala W, Egdell RG, Edwards PP, Mazej Z, Žemva B. ChemPhysChem 2003; 4: 997
- 48c Walroth RC, Lukens JT, MacMillan SN, Finkelstein KD, Lancaster KM. J. Am. Chem. Soc. 2016; 138: 1922
- 48d Gao C, Macetti G, Overgaard J. Inorg. Chem. 2019; 58: 2133
- 48e DiMucci I. M., Lukens J. T., Chatterjee S., Carsch K. M., Titus C. J., Lee S. J., Nordlund D.: Betley TA, MacMillan SN, Lancaster KM. J. Am. Chem. Soc. 2019; 141: 18508
- 48f Geoghegan BL, Liu Y, Peredkov S, Dechert S, Meyer F, DeBeer S, Cutsail GE. III. J. Am. Chem. Soc. 2022; 144: 2520
- 48g Leach IF, Havenith RW. A, Klein JE. M. N. Eur. J. Inorg. Chem. 2022; e202200247
- 48h DiMucci IM, Titus CJ, Nordlund DN, Bour JR, Chong E, Grigas DP, Hu C.-H, Kosobokov MD, Martin CD, Mirica LM, Nebra N, Vicic DA, Yorks LL, Yruegas S, MacMillan SN, Shearer J, Lancaster KM. Chem. Sci. 2023; 14: 6915
- 48i Alayoglu P, Chang T, Yan C, Chen Y.-S, Mankad NP. Angew. Chem. Int. Ed. 2023; 62: e202313744
- 49a MacMillan SN, Lancaster KM. ACS Catal. 2017; 7: 1776
- 49b Baya M, Joven-Sancho D, Alonso PJ, Orduna J, Menjón B. Angew. Chem. Int. Ed. 2019; 58: 9954
- 49c Steen JS, Knizia G, Klein JE. M. N. Angew. Chem. Int. Ed. 2019; 58: 13133
- 49d Pérez-Bitrián A, Baya M, Casas JM, Martín A, Menjón B. Dalton Trans. 2021; 50: 5465
- 49e Shearer J, Vasiliauskas D, Lancaster KM. Chem. Commun. 2023; 59: 98
Organofluorine compounds are valuable synthons in medicinal and agrochemistry or in material science:
For representative examples, see:
An alternative entry to III and related compounds IV–VI has been reported by employing AgF as a fluoride source and oxidant:
For two other examples of Ullmann–Goldberg fluorinations enabled by putative CuIII fluorides, see:
For reminiscent silver chemistry, see:
CuIII/F binary salts are known:
The combination of F– sources and an external oxidant has been already used with success to build high-valent nickel fluorides:
C–C couplings:
C–heteroatom couplings:
For recent reviews on the HLF reaction, see:
For some representative examples of halide exchange using AgF, see:
See ref. 38, 39, and: