Subscribe to RSS
DOI: 10.1055/a-2379-9406
Chiral π-Conjugated Double Helical Aminyl Diradical with the Triplet Ground State
We thank the NSF Chemistry Division for supporting this research under Grants CHE-1955349 and CHE-2247170.
Abstract
We describe effective development of the highly diastereoselective synthesis of double helical tetraamine 2-H2-C2 and propose a mechanism for its formation. The resolution of 2-H2-C2 is facilitated by a high racemization barrier of 43 kcal mol–1 and it is implemented via either a chiral auxiliary or preparative supercritical fluid chromatography. This enables preparation of the first high-spin neutral diradical, with spin density delocalized within an enantiomeric double helical π-system. The presence of two effective 3-electron C–N bonds in the diradical leads to: (1) the triplet (S = 1) high-spin ground state with a singlet-triplet energy gap of 0.4 kcal mol–1 and (2) the long half-life of up to 6 days in 2-MeTHF at room temperature. The diradical possesses a racemization barrier of at least 26 kcal mol–1 in 2-MeTHF at 293 K and chiroptical properties, with an absorption anisotropy factor |g| ≈ 0.005 at 548 nm. These unique magnetic and optical properties of our diradical form the basis for the development of next-generation spintronic devices.
1 Introduction
2 Synthesis and Resolution of the C 2-Symmetric Double Helical Tetraamine 2-H2-C 2
3 Synthesis and Characterization of Neutral High-Spin Aminyl Diradical 22• -C 2
4 Conclusion
Key words
helical structures - radicals - chiral resolution - electrophilic aromatic substitution - electron transfer - oxidation - aminyl diradicalsPublication History
Received: 02 July 2024
Accepted: 05 August 2024
Accepted Manuscript online:
05 August 2024
Article published online:
02 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chem. Rev. 2024; 124: 1950
- 2 Rodríguez R, Naranjo C, Kumar A, Matozzo P, Das TK, Zhu Q, Vanthuyne N, Gómez R, Naaman R, Sánchez L, Crassous J. J. Am. Chem. Soc. 2022; 144: 7709
- 3 Kiran V, Mathew SP, Cohen SR, Hernández Delgado I, Lacour J, Naaman R. Adv. Mater. 2016; 28: 1957
- 4 Kettner M, Maslyuk VV, Ngrenberg D, Seibel J, Gutierrez R, Cuniberti G, Ernst KH, Zacharias H. J. Phys. Chem. Lett. 2018; 9: 2025
- 5 Pan TR, Guo AM, Sun QF. Phys. Rev. B 2016; 94: 235448
- 6 Shil S, Bhattacharya D, Misra A, Klein DJ. Phys. Chem. Chem. Phys. 2015; 17: 23378
- 7 Cho D, Lee JY. J. Phys. Chem. C 2023; 127: 8256
- 8 Tahir H, Eedugurala N, Hsu SN, Mahalingavelar P, Savoie BM, Boudouris BW, Azoulay JD. Adv. Mater. 2024; 36: 2306389
- 9 Shu C, Yang Z, Rajca A. Chem. Rev. 2023; 123: 11954
- 10 Datta SN, Pal AK, Panda A. Chem. Phys. Impact 2023; 7: 100379
- 11 Yeo H, Debnath S, Krishnan BP, Boudouris BW. RSC Appl. Polym. 2024; 2: 7
- 12 Ueda A, Wasa H, Suzuki S, Okada K, Sato K, Takui T, Morita Y. Angew. Chem. Int. Ed. 2012; 51: 6691
- 13 Sørensen TJ, Nielsen MF, Laursen BW. ChemPlusChem 2014; 79: 1030
- 14 Fabri B, Funaioli T, Frédéric L, Elsner C, Bordignon E, Zinna F, Di Bari L, Pescitelli G, Lacour J. J. Am. Chem. Soc. 2024; 146: 8308
- 15 Harada K, Hasegawa C, Matsumoto T, Sugishita H, Kitamura C, Higashibayashi S, Hasegawa M, Suzuki S, Kato S. Chem. Commun. 2023; 59: 1301
- 16 Ravat P, Ribar P, Rickhaus M, Häussinger D, Neuburger M, Juríček M. J. Org. Chem. 2016; 81: 12303
- 17 Kato K, Furukawa K, Mori T, Osuka A. Chem. Eur. J. 2018; 24: 572
- 18 Zak JK, Miyasaka M, Rajca S, Lapkowski M, Rajca A. J. Am. Chem. Soc. 2010; 132: 3246
- 19 Wang Y, Zhang H, Pink M, Olankitwanit A, Rajca S, Rajca A. J. Am. Chem. Soc. 2016; 138: 7298
- 20 Rajca A, Shu C, Zhang H, Zhang S, Wang H, Rajca S. Photochemistry and Photobiology 2021; 97: 1376
- 21 Kasemthaveechok S, Abella L, Jean M, Cordier M, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. J. Am. Chem. Soc. 2022; 144: 7253
- 22 Duan L, Xue X, Hong B, Gu Z. Adv. Sci. 2023; 10: 2304563
- 23 Shu C, Zhang H, Olankitwanit A, Rajca S, Rajca A. J. Am. Chem. Soc. 2019; 141: 17287
- 24 Borissov A, Chmielewski PJ, Gómez García CJ, Lis T, Stępień M. Angew. Chem. Int. Ed. 2023; 62: e202309238
- 25 Wu H, Hanayama H, Coehlo M, Gu Y, Wu Z.-H, Takebayashi S, Jakob G, Vasylevskyi S, Schollmeyer D, Kläui M, Pieters G, Baumgarten M, Müllen K, Natita A, Qiu Z. J. Am. Chem. Soc. 2024; 146: 7480
- 26 Gallagher NM, Bauer JJ, Pink M, Rajca S, Rajca A. J. Am. Chem. Soc. 2016; 138: 9377
- 27 Gallagher N, Zhang H, Junghoefer T, Giangrisostomi E, Ovsyannikov R, Pink M, Rajca S, Casu MB, Rajca A. J. Am. Chem. Soc. 2019; 141: 4764
- 28 Shu C, Pink M, Junghoefer T, Nadler E, Rajca S, Casu MB, Rajca A. J. Am. Chem. Soc. 2021; 143: 5508
- 29 Zhang S, Pink M, Junghoefer T, Zhao W, Hsu S.-N, Rajca S, Calzolari A, Boudouris BW, Casu MB, Rajca A. J. Am. Chem. Soc. 2022; 144: 6059
- 30a Guo H, Lovell JB, Shu C, Pink M, Morton M, Rajca S, Rajca A. J. Am. Chem. Soc. 2024; 146: 9422
- 30b Humke JN. J. Am. Chem. Soc. 2024; 146: 16355
- 31 Shiraishi K, Rajca A, Pink M, Rajca S. J. Am. Chem. Soc. 2005; 127: 9312
- 32 Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 33 Memarian HR, Ghazaie M, Mehneh SK. Z. Naturforsch., B: J. Chem. Sci 2009; 64: 1187
- 34 Rajca A, Boratyński PJ, Olankitwanit A, Shiraishi K, Pink M, Rajca S. J. Org. Chem. 2012; 77: 2107
- 35 Sasaki K, Kashimura T, Ohura M, Ohsaki Y, Ohta N. J. Electrochem. Soc. 1990; 137: 2437
- 36 Huynh MT, Anson CW, Cavell AC, Stahl SS, Hammes-Schiffer S. J. Am. Chem. Soc. 2016; 138: 15903
- 37 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
- 38 Chandross EA, Sonntag FI. J. Am. Chem. Soc. 1966; 88: 1089
- 39 Ruffoni A, Juliá F, Svejstrup TD, McMillan AJ, Douglas JJ, Leonori D. Nat. Chem. 2019; 11: 426
- 40 Svejstrup TD, Ruffoni A, Juliá F, Aubert VM, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
- 41 Shine HJ, Gruszecka E, Subotkowski W, Brownawell M, San Filipo JJr. J. Am. Chem. Soc. 1985; 107: 3218
- 42 Kanta C, Fabio D, Pesciaioli F, List B. Angew. Chem. Int. Ed. 2013; 52: 9293
- 43 Li G-Q, Gao H, Keene C, Devonas M, Ess DH, Kürti L. J. Am. Chem. Soc. 2013; 135: 7414
- 44 Vale M, Pink M, Rajca S, Rajca A. J. Org. Chem. 2008; 73: 27
- 45 Donohoe TJ, House D. J. Org. Chem. 2002; 67: 5015
- 46 Donohoe TJ, Headley CE, Cousins RP. C, Cowley A. Org. Lett. 2003; 5: 999
- 47 Huang S, Paletta JT, Elajaili H, Huber K, Pink M, Rajca S, Eaton GR, Eaton SS, Rajca A. J. Org. Chem. 2017; 82: 1538
- 48 Mourier PA, Eliot E, Caude MH, Rosset RH, Tambute AG. Anal. Chem. 1985; 57: 2819
- 49 Storch J, Kalíková K, Tesařová E, Maier V, Vacek J. J. Chromatogr. A 2016; 1476: 130
- 50 Mori T. Chem. Rev. 2021; 121: 2373
- 51 Rajca A, Shiraishi K, Pink M, Rajca S. J. Am. Chem. Soc. 2007; 129: 7232
- 52 Boratynski PJ, Pink M, Rajca S, Rajca A. Angew. Chem. Int. Ed. 2010; 49: 5459
- 53 Rajca A, Olankitwanit A, Wang Y, Boratyński PJ, Pink M, Rajca S. J. Am. Chem. Soc. 2013; 135: 18205
- 54 Zhang H, Pink M, Wang Y, Rajca S, Rajca A. J. Am. Chem. Soc. 2022; 144: 19576
- 55 Ovchinnikov AA. Theor. Chim. Acta 1978; 47: 297
- 56 Gallagher NM, Olankitwanit A, Rajca A. J. Org. Chem. 2015; 80: 1291