Synlett 2024; 35(20): 2525-2531 DOI: 10.1055/a-2403-5390
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu
Visible-Light-Induced Iron(III)-Catalyzed Synthesis of Unsymmetrical Bis(indolyl)methanes through Hydrogen Atom Transfer
Kush Mandal
,
Gopal Rana
,
Asadujjaman Nur
,
Sourav Ghosh
,
This work was financially supported by research funds from Jadavpur University and U.G.C.
Dedicated to Professor B. C. Ranu on the occasion of his 75th birthday
Abstract
We report a visible-light-mediated, FeCl3 -catalyzed, one-pot tandem strategy for the regioselective synthesis of unsymmetrically substituted tertiary and quaternary carbon-containing 3,3′-bis(indolyl)methanes under aerobic conditions. This strategy involves the coupling of 3-arylideneindolines with indoles through a photoinduced chlorine-radical-mediated hydrogen-atom-transfer reaction. The present strategy features mild and environmentally benign reaction conditions, low cost, high yields, and tolerance of a wide range of functional groups. Furthermore, to demonstrate the synthetic value of the reaction, a naturally occurring bioactive bisindolyl(phenyl)methane was synthesized.
Key words
iron catalysis -
hydrogen atom transfer -
photoredox reaction -
bisindolylmethanes
Publication History
Received: 27 July 2024
Accepted after revision: 26 August 2024
Accepted Manuscript online: 26 August 2024
Article published online: 25 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Kaushik NK,
Kaushik N,
Attri P,
Kumar N,
Kim CH,
Verma AK,
Choi EH.
Molecules 2013; 18: 6620
1b
Endo T,
Tsuda M,
Fromont J,
Kobayashi J.
J. Nat. Prod. 2007; 70: 423
1c
Garbe TR,
Kobayashi M,
Shimizu N,
Takesue N,
Ozawa M,
Yukawa H.
J. Nat. Prod. 2000; 63: 596
1d
Ramírez A,
García-Rubio S.
Curr. Med. Chem. 2003; 10: 1891
1e
Lafzi F,
Taskesenligil Y,
Canimkurbey B,
Piravadili S,
Kilic H,
Saracoglu N.
ACS Omega 2022; 7: 44322
2a
Tjalkens RB,
Safe S.
US 8580843, 2013
2b
Imran S,
Taha M,
Ismail NH.
Curr. Med. Chem. 2015; 22: 4412
3a
Bell R,
Carmeli S,
Sar N.
J. Nat. Prod. 1994; 57: 1587
3b
Jella RR,
Nagarajan R.
Tetrahedron 2013; 69: 10249
3c
Ramshini H,
Mannini B,
Khodayari K,
Habibi AE,
Moghaddasi AS,
Tayebee R,
Chiti F.
Eur. J. Med. Chem. 2016; 124: 361
3d
Khuzhaev BU,
Aripova SF,
Shakirov RS.
Chem. Nat. Compd. 1994; 30: 635
4a
Safe S,
Papineni S,
Chinthariapalli S.
Cancer Lett. 2008; 269: 326
4b
Jiang Y,
Fang Y,
Ye Y,
Xu X,
Wang B,
Gu J,
Aschner M,
Chen J,
Lu R.
Front. Pharmacol. 2019; 10: 1167
5
Srivastava A,
Agarwal A,
Gupta SK,
Jain N.
RSC Adv. 2016; 6: 23008
6
Deb B,
Debnath S,
Chakraborty A,
Majumdar S.
RSC Adv. 2021; 11: 30827
7
Jamsheena V,
Shilpa G,
Saranya J,
Harry NA,
Lankalapalli RS,
Priya S.
Chem.-Biol. Interact. 2016; 247: 11
8
Nagre DT,
Mali SN,
Thorat BR,
Thorat SA,
Chopade TA,
Farooqui M,
Agrawal B.
Curr. Enzyme Inhib. 2021; 17: 127
9
Zhang M.-Z,
Chen Q,
Yang G.-F.
Eur. J. Med. Chem. 2015; 89: 421
10
Sujatha K,
Perumal PT,
Muralidharan D,
Rajendran M.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 267
11a
He X,
Hu S,
Liu K,
Guo Y,
Xu J,
Shao S.
Org. Lett. 2006; 8: 333
11b
Martínez R,
Espinosa A,
Tárraga A,
Molina P.
Tetrahedron 2008; 64: 2184
12a
Zeng M,
Xue J.-W,
Jiang H,
Li K,
Chen Y,
Chen Z,
Yin G.
J. Org. Chem. 2021; 86: 8333
12b
Lee SO,
Choi J,
Kook S,
Lee SY.
Org. Biomol. Chem. 2020; 18: 9060
13a
Yadav JS,
Gupta MK,
Jain R,
Yadav NN,
Reddy BV. S.
Monatsh. Chem. 2010; 141: 1001
13b
Ganesan A,
Kothandapani J,
Nanubolu JB,
Ganesan SS.
RSC Adv. 2015; 5: 28597
13c
Bandgar BP,
Shaikh KA.
Tetrahedron Lett. 2003; 44: 1959
14a
Xia D,
Wang Y,
Du Z,
Zheng Q.-Y,
Wang C.
Org. Lett. 2011; 14: 588
14b
Saini P,
Kumari P,
Hazra S,
Elias AJ.
Chem. Asian J. 2019; 14: 4154
14c
Muñoz MP,
de la Torre MC,
Sierra MA.
Chem. Eur. J. 2012; 18: 4499
15a
Zhu W.-R,
Su Q,
Deng X.-Y,
Liu J.-S,
Zhong T,
Meng S.-S,
Yi J.-T,
Weng J,
Lu G.
Chem. Sci. 2022; 13: 170
15b
Yuan L,
Palmieri A,
Petrini M.
Adv. Synth. Catal. 2020; 362: 1509
15c
Zhu W.-J,
Gong J.-F,
Song M.-P.
J. Org. Chem. 2020; 85: 9525
15d
Chantana C,
Jaratjaroonphong J.
J. Org. Chem. 2021; 86: 2312
15e
Bag D,
Sawant SD.
Org. Lett. 2022; 24: 4930
15f
Yimyaem J,
Chantana C,
Boonmee S,
Jaratjaroonphong J.
Synlett 2022; 33: 1363
16a
Yoon TP,
Ischay MA,
Du J.
Nat. Chem. 2010; 2: 527
16b
Festa AA,
Voskressensky LG,
Van der Eycken EV.
Chem. Soc. Rev. 2019; 48: 4401
17a
Yi H,
Zhang G,
Wang H,
Huang Z,
Wang J,
Sing AK,
Lei A.
Chem. Rev. 2017; 117: 9016
17b
Perry IB,
Brewer TF,
Sarver PJ,
Schultz DM,
DiRocco DA,
MacMillan DW. C.
Nature 2018; 560: 70
18a
Rohe S,
Morris AO,
McCallum T,
Barriault L.
Angew. Chem. Int. Ed. 2018; 57: 15664
18b
Deng H.-P,
Zhou Q,
Wu J.
Angew. Chem. Int. Ed. 2018; 130: 12843
19a
Kang YC,
Treacy SM,
Rovis T.
ACS Catal. 2021; 11: 7442
19b
Zhang Q,
Liu S,
Lei J,
Zhang Y,
Meng C,
Duan C,
Jin Y.
Org. Lett. 2022; 24: 1901
19c
Chinchole A,
Henriquez MA,
Arriagada DC,
Cabrera AR,
Reiser O.
ACS Catal. 2022; 12: 13549
20
Ye L,
Cai S.-H,
Wang D.-X,
Wang Y.-Q,
Lai L.-J,
Feng C,
Loh T.-P.
Org. Lett. 2017; 19: 6164
21
Silalai P,
Saeeng R.
J. Org. Chem. 2023; 88: 4052
22a
Kundal S,
Jalal S,
Paul K,
Jana U.
Eur. J. Org. Chem. 2015; 2015: 5513
22b
Chanda R,
Chakraborty B,
Rana G,
Jana U.
Eur. J. Org. Chem. 2020; 2020: 61
22c
Jalal S,
Paul K,
Jana U.
Org. Lett. 2016; 18: 6512
22d
Paul K,
Jalal S,
Kundal S,
Jana U.
J. Org. Chem. 2016; 81: 1164
23
Kundal S,
Rana G,
Kar A,
Jana U.
Org. Biomol. Chem. 2022; 20: 5234
24 CCDC 2373401 contains the supplementary crystallographic data for compound 4b . The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
25
Gogula SS,
Prasanna DV,
Thumma V,
Misra S,
Lincoln CA,
Reddy PM,
Hu A,
Subbareddy BV.
ACS Omega 2023; 8: 36401
26
Trost BM,
Jiang C.
Synthesis 2006; 369
27a
Horibe T,
Ishihara K,
Ohmura S.
J. Am. Chem. Soc. 2019; 141: 1877
27b
Rogolino A,
Filho JB. G,
Fritsch L,
Ardisson JD,
da Silva MA. R,
Diab GA. A,
Silva IF,
Moraes CA. F,
Forim MR,
Bauer M,
Kühne TD,
Antonietti M,
Teixeira IF.
ACS Catal. 2023; 13: 8662
28
1-Methyl-3-[(1-tosyl-1H -indol-3-yl)(phenyl)methyl]-1H -indole (4a); Typical Procedure
An oven-dried 20 mL reaction tube equipped with a magnetic stirrer bar was charged with indoline 2a (75 mg, 0.20 mmol), N -methylindole (3a ) (30 mg, 0.22 mmol), anhyd FeCl3 (9.7 mg, 30 mol%), activated anhyd MgSO4 (24 mg, 1 equiv), and anhyd MeCN (2 mL). The mixture was then irradiated with a 32 W CFL under O2 (balloon) at 60 °C for 24 h. When the reaction was complete (TLC), the mixture was extracted with EtOAc (3 × 20 mL), and the organic phase was dried (Na2 SO4 ) and concentrated. The resulting crude product was purified by column chromatography [silica gel (60–120 mesh), hexane–EtOAc (97:3)] to give a white solid; yield: 87 mg (89%); mp 68–71 °C.
1 H NMR (400 MHz, CDCl3 ): δ = 8.00 (d, J = 8.3 Hz, 1 H), 7.63 (d, J = 7.0 Hz, 2 H), 7.36–7.29 (m, 5 H), 7.29 (s, 1 H), 7.27 (d, J = 2.3 Hz, 2 H), 7.25 (d, J = 3.7 Hz, 2 H), 7.22 (d, J = 8.2 Hz, 2 H), 7.12 (t, J = 7.6 Hz, 1 H), 7.05 (s, 1 H), 7.01 (t, J = 7.4 Hz, 1 H), 6.41 (s, 1 H), 5.74 (s, 1 H), 3.72 (s, 3 H), 2.40 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 144.6, 142.2, 137.5, 135.8, 135.0, 130.6, 129.7, 128.6, 128.5, 128.2, 127.03, 126.9, 126.6, 126.5, 125.6, 124.6, 123.1, 121.7, 120.4, 119.6, 118.8, 116.5, 113.9, 109.4, 40.0, 32.8, 21.6. HRMS (ESI): m/z [M + H]+ calcd for C31 H27 N2 O2 S: 491.1793; found: 491.1791.