Subscribe to RSS
DOI: 10.1055/a-2413-0458
The Development of Radical/Palladium Relay Catalysis for C–H Carbonylation
We are grateful for financial support from the National Key Research and Development Program of China (2023YFA1507500), the National Natural Science Foundation of China (21925111, 22350008, and 22301289), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0450301).
Abstract
The radical/palladium relay catalysis for C–H bond carbonylation is an attractive research topic in synthetic chemistry. It can rapidly prepare carbonylated molecules for synthetic or pharmaceutical applications from highly sought-after feedstocks, such as alkylarenes, alkanes, alkenes, or ethers. The main objective of this Synpacts article is to summarize the development of this research area, mainly focusing on radical/palladium relay catalysis for the carbonylation of single and double C–H bonds.
1 Introduction
2 Radical/Palladium Relay Catalysis for Single C–H Bond Carbonylation Reaction
3 Radical/Palladium Relay Catalysis for Double C–H Bond Carbonylation Reaction
4 Conclusions
Key words
relay catalysis - C–H bond activation - carbonylation - selectivity - hydrogen atom abstractionPublication History
Received: 04 August 2024
Accepted after revision: 10 September 2024
Accepted Manuscript online:
10 September 2024
Article published online:
08 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 1b Shen C, Wu X.-F. Chem. Eur. J. 2017; 23: 2973
- 1c Gadge ST, Bhanage BM. RSC Adv. 2014; 4: 10367
- 1d Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
- 2 Zhu C, Liu J, Li M.-B, Bäckvall J.-E. Chem. Soc. Rev. 2020; 49: 341
- 3 Zhao S, Mankad NP. Catal. Sci. Technol. 2019; 9: 3603
- 4a Li Y, Hu Y, Wu X.-F. Chem. Soc. Rev. 2018; 47: 172
- 4b Lukasevics L, Grigorjeva L. Org. Biomol. Chem. 2020; 18: 7460
- 5a Wakuluk-Machado A.-M, Dewez DF, Baguia H, Imbratta M, Echeverria P.-G, Evano G. Org. Process Res. Dev. 2020; 24: 713
- 5b Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
- 6a Shen TY. Angew. Chem., Int. Ed. Engl. 1972; 11: 460
- 6b Maag H, Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW. Prodrugs: Challenges and Rewards, Part 2. Springer; New York: 2007: 703
- 7a Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
- 7b Vanjari R, Singh KN. Chem. Soc. Rev. 2015; 44: 8062
- 7c Vasilopoulos A, Zultanski SL, Stahl SS. J. Am. Chem. Soc. 2017; 139: 7705
- 8a Meng Q.-Y, Schirmer TE, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
- 8b Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
- 9 Xie P, Xie Y, Qian B, Zhou H, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 9902
- 10a Tsou TT, Kochi JK. J. Am. Chem. Soc. 1979; 101: 6319
- 10b Hall TL, Lappert MF, Lednor PW. J. Chem. Soc., Dalton Trans. 1980; 1448
- 10c Boisvert L, Denney MC, Hanson SK, Goldberg KI. J. Am. Chem. Soc. 2009; 131: 15802
- 10d Fafard CM, Adhikari D, Foxman BM, Mindiola DJ, Ozerov OV. J. Am. Chem. Soc. 2007; 129: 10318
- 10e Albéniz AC, Espinet P, López-Fernández R, Sen A. J. Am. Chem. Soc. 2002; 124: 11278
- 10f Reid SJ, Baird MC. Organometallics 1997; 16: 2481
- 11 Xie P, Xia C, Huang H. Org. Lett. 2013; 15: 3370
- 12a Qin G, Chen X, Yang L, Huang H. ACS Catal. 2015; 5: 2882
- 12b Qin G, Wang Y, Huang H. Org. Lett. 2017; 19: 6352
- 13 Liu H, Laurenczy G, Yan N, Dyson PJ. Chem. Commun. 2014; 50: 341
- 14 Lu L, Shi R, Liu L, Yan J, Lu F, Lei A. Chem. Eur. J. 2016; 22: 14484
- 15a Li Y, Dong K, Zhu F, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 7227
- 15b Li Y, Zhu F, Wang Z, Wu X.-F. ACS Catal. 2016; 6: 5561
- 15c Li Y, Wang C, Zhu F, Wang Z, Dixneuf PH, Wu X.-F. ChemSusChem 2017; 10: 1341
- 16 Li Y, Zhu F, Wang Z, Wu X.-F. Chem. Commun. 2018; 54: 1984
- 17 Chen C, Xu XH, Yang B, Qing FL. Org. Lett. 2014; 16: 3372
- 18a Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
- 18b Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Nature 2019; 574: 516
- 19a Wang L.-C, Chen B, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202203797
- 19b Wang L.-C, Chen B, Zhang Y, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202207970
- 20 Ding Y, Huang R, Zhang W, Huang H. Org. Lett. 2022; 24: 7972
- 21a Qin L, Sharique M, Tambar UK. J. Am. Chem. Soc. 2019; 141: 17305
- 21b Stang EM, White MC. J. Am. Chem. Soc. 2011; 133: 14892
- 21c Jiang C, Covell DJ, Stepan AF, Plummer MS, White MC. Org. Lett. 2012; 14: 1386
- 22 Ding Y, Wu J, Huang H. J. Am. Chem. Soc. 2023; 145: 4982
- 23 Zhang Z, Liu Y, Ling L, Li Y, Dong Y, Gong M, Zhao X, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 4330
- 24a Huang H.-M, Bellotti P, Glorius F. Chem. Soc. Rev. 2020; 49: 6186
- 24b Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
- 24c Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
- 24d Cheung KP. S, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Science 2022; 378: 1207
- 24e Huang C, Qiao J, Ci R.-N, Wang X.-Z, Wang Y, Wang J.-H, Chen B, Tung C.-H, Wu L.-Z. Chem 2021; 7: 1244
- 24f Ali SZ, Budaitis BG, Fontaine DF. A, Pace AL, Garwin JA, White MC. Science 2022; 376: 276
- 24g Jin Y, Jing Y, Li C, Li M, Wu W, Ke Z, Jiang H. Nat. Chem. 2022; 14: 1118
- 25 Ding Y, Wu J, Zhang T, Liu H, Huang H. J. Am. Chem. Soc. 2024; 146: 19635