RSS-Feed abonnieren
DOI: 10.1055/a-2416-2329
C–H Activation: A Versatile Tool for the Synthesis of Niclosamide and Its Derivatives
Financial support was provided by CSIR, New Delhi.

Abstract
A novel strategy has been developed for the direct and regioselective ortho-acetoxylation of N-(2-benzoylphenyl)benzamides through C–H activation using a catalytic amount of Pd(OAc)2 (5 mol%) and a stoichiometric amount of PhI(OAc)2 in a mixture of acetic anhydride and acetic acid. By using this protocol, a new series of niclosamide derivatives was produced in good yields. This is the first report on the synthesis of niclosamide and its derivatives by means of C–H functionalization. This newly developed method offers several advantages such as high regioselectivity, operational simplicity, and good to excellent yields. It provides a short three-step process for the synthesis of niclosamide involving acid–amine coupling, ortho-acetoxylation through C–H activation, and deacylation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2416-2329.
- Supporting Information
Publikationsverlauf
Eingereicht: 25. Juli 2024
Angenommen nach Revision: 16. September 2024
Accepted Manuscript online:
16. September 2024
Artikel online veröffentlicht:
07. Oktober 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Andrews P, Thyssen J, Lorke D. Pharmacol. Ther. 1983; 19: 245
- 2 Pearson RD, Hewlett EL. Ann. Intern. Med. 1985; 102: 550
- 3 WHO Expert Committee on the Selection and Use of Essential Medicines. The Selection and Use of Essential Medicines, Report of the WHO Expert Committee; Geneva: 2007. World Health Organization
- 4 Weinbach EC, Garbus J. Nature 1969; 221: 1016
- 5 Williamson RL, Metcalf RL. Science 1967; 158: 1694
- 6 Frayha GJ, Smyth JD, Gobert JG, Savel J. Gen. Pharmacol. 1997; 28: 273
- 7 Swan GE. J. S. Afr. Vet. Assoc. 1999; 70: 61
- 8 Chen W, Mook RA. Jr, Premont RT, Wang J. Cell Signal. 2018; 41: 89
- 9 De Clercq E. Expert Rev. Anti-Infect. Ther. 2006; 4: 291
- 10 Wu C.-J, Jan J.-T, Chen C.-M, Hsieh H.-P, Hwang D.-R, Liu H.-W, Liu C.-Y, Huang H.-W, Chen S.-C, Lin R.-K, Chao Y.-S, Hsu JT. A. Antimicrob. Agents Chemother. 2004; 48: 2693
- 11 Xu J, Shi P.-Y, Li H, Zhou J. ACS Infect. Dis. 2020; 6: 909
- 12 Xu J, Berastegui-Cabrera J, Ye N, Carretero-Ledesma M, Pachón-Díaz J, Chen H, Pachón-Ibáñez ME, Sánchez-Céspedes J, Zhou J. J. Med. Chem. 2020; 63: 12830
- 13 Backer V, Sjöbring U, Sonne J, Weiss A, Hostrup M, Johansen HK, Becker V, Sonne DP, Balchen T, Jellingsø M, Sommer MO. A. Lancet Reg. Health Eur. 2021; 4: 100084
- 14 Jeon S, Meehyun K, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Antimicrob. Agents Chemother. 2020; 64: e00819-20
- 15 Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, Penn R, Jimenez-Guardeño JM, Ortega-Prieto AM, Bussani R, Cannatà A, Rizzari G, Collesi C, Schneider E, Arosio D, Shah AM, Barclay WS, Malim MH, Burrone J, Giacca M. Nature 2021; 594: 88
- 16 Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. Nat. Commun. 2021; 12: 3818
- 17 Blake S, Shaabani N, Eubanks LM, Maruyama J, Manning JT, Beutler N, Paessler S, Ji H, Teijaro JR, Janda KD. ACS Infect. Dis. 2021; 7: 2229
- 18 Shamim K, Xu M, Hu X, Lee EM, Lu X, Huang R, Shah P, Xu X, Chen CZ, Shen M, Guo H, Chen L, Itkin Z, Eastman RT, Shinn P, Klumpp-Thomas C, Michael S, Simeonov A, Lo DC, Ming G.-l, Song H, Tang H, Zheng W, Huang W. Bioorg. Med. Chem. Lett. 2021; 40: 127906
- 19 Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Cancer Lett. 2014; 349: 8
- 20 Natarajan P, Renu C, Rani N, Sakshi Sakshi, Venugopalan P. Tetrahedron Lett. 2020; 61: 151529
- 21a Li R, Zhang Z, Huang S, Peng K, Ziang H, Shen J, Zhang B, Jiang X. Eur. J. Med. Chem. 2023; 253: 115320
- 21b Borui K, Mottamal M, Zhong Q, Bratton M, Zhang C, Guo S, Hossain A, Ma P, Zhang Q, Wang G, Payton-Stewart F. Pharmaceuticals 2023; 16: 735
- 22a Jagadish M, Reddy BV. S. Tetrahedron 2024; 150: 133768
- 22b Sahoo T, Reddy BV. S. Tetrahedron Lett. 2022; 97: 153783
- 22c Gundamalla R, Bantu R, Reddy BV. S. Results Chem. 2023; 5: 100993
- 22d Gundamalla R, Bantu R, Reddy BV. S. ARKIVOC 2024; (vii): 202412204
- 23a Joshi SD, Dixit SR, Basha J, Kulkarni VH, Aminabhavi TM, Nadagouda MN, Lherbert C. Bioorg. Chem. 2018; 81: 440
- 23b Begum Z, Bhavan G, Sridhar B, Reddy BV. S. Synthesis 2018; 50: 4089
- 24a Cheng X.-F, Li Y.-Y, Su Y.-M, Yin F, Wang J.-Y, Sheng J, Vora HU, Wang X.-S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 1236
- 24b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 24c Kancharla SR, Bantu R, Sridhar B, Venkata Narasaiah A, Reddy BV. S. Tetrahedron 2024; 163: 134128
- 25 CCDC 2373126 contains the supplementary crystallographic data for compound 2. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 26a Reddy BV. S, Reddy RL, Corey EJ. Org. Lett. 2006; 8: 3391
- 26b Large B, Bourdreux A, Damond A, Gaucher A, Prim D. Catalysts 2018; 8: 139
- 26c Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 26d Yoneyama T, Crabtree RH. J. Mol. Catal. A 1996; 108: 35
- 27 4-Chloro-2-{[(2-chloro-4-nitrophenyl)amino]carbonyl}phenyl Acetate (2); Typical Procedure PhI(OAc)2 (1.14 g, 3.54 mmol) was added with stirring to 3-chloro-N-(2-chloro-4-nitrophenyl)benzamide (1; 1.0 g, 3.22 mmol) in 1:1 AcOH–Ac2O (10 mL), and the mixture was stirred for 5 min. Pd(OAc)2 (5 mol%, 36 mg) was then added at r.t., and the mixture was heated to 100 °C for 12 h until the reaction was complete (TLC). The resulting mixture was extracted with EtOAc (2 × 150 mL), and the combined organic layers were washed with H2O (50 mL), dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, 10–15% EtOAc–hexane) to give a white solid; yield: 0.71 g (60%); mp 156–157 °C. 1H NMR (400 MHz, CDCl3): δ = 9.05 (s, 1 H), 8.85 (d, J = 9.2 Hz, 1 H), 8.35 (d, J = 2.5 Hz, 1 H), 8.23 (dd, J = 9.2, 2.5 Hz, 1 H), 7.97 (d, J = 2.6 Hz, 1 H), 7.55 (dd, J = 8.7, 2.6 Hz, 1 H), 7.18 (d, J = 8.7 Hz, 1 H), 2.40 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 168.3, 162.2, 146.4, 143.4, 140.1, 133.2, 132.4, 130.6, 128.1, 125.1, 124.8, 123.8, 122.3, 120.7, 21.3. HRMS (ESI): m/z [M – H]+ calcd for C15H9Cl2N2O5: 366.98940; found: 366.99077.