Subscribe to RSS
DOI: 10.1055/a-2493-7974
Direct One-Pot Synthesis of Tetrazole Derivatives from Aldehydes under Metal-Free Conditions
This research was supported by IIT Roorkee and DST-FIST [SR/FST/CS-II/ 2018/72(C)] (funding to the Chemistry Department, IIT Roorkee, for the provision of 500 MHz NMR and XRD facilities). R.S. is grateful to the MHRD, IIT Roorkee, for providing a JRF fellowship.

Abstract
A simple and efficient one-pot protocol has been developed for the synthesis of 1H-tetrazole and 1-methyltetrazole derivatives from aldehydes under mild and metal-free conditions using ammonium azide or methyl azide, respectively. A number of tetrazole derivatives were obtained in moderate to high yields (75–92%) in green solvents at a moderate temperature. These reactions presumably proceed through the formation of a nitrile in situ. The mild conditions and the easy workup and purification make this method highly valuable.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2493-7974.
- Supporting Information
Publication History
Received: 24 October 2024
Accepted after revision: 29 November 2024
Accepted Manuscript online:
29 November 2024
Article published online:
18 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Rostamnia S. RSC Adv. 2015; 5: 97044
- 1b Nohara A, Kuriki H, Saijo T, Sugihara H, Kanno M, Sanno Y. J. Med. Chem. 1977; 20: 141
- 1c Andrus A, Partridge B, Heck JV, Christensen BG. Tetrahedron Lett. 1984; 25: 911
- 1d Momose Y, Maekawa T, Odaka H, Ikeda H, Sohda T. Chem. Pharm. Bull. 2002; 50: 100
- 2a Zarganes-Tzitzikasa I, Dömling A. Org. Chem. Front. 2014; 1: 834
- 2b Wu S, Fluxe A, Sheffer J, Janusz JM, Blass BE, White R, Jackson C, Hedges R, Murawsky M, Fang B, Fadayel GM, Hare M, Djandjighian L. Bioorg. Med. Chem. Lett. 2006; 16: 6213
- 2c Wood E, Crosby RM, Dickerson S, Frye SV, Griffin R, Hunter R, Jung DK, McDonald OB, McNutt R, Mahony WB, Peel MR, Ray J, Lackey K. Anti-Cancer Drug Des. 2001; 16: 1
- 3a Reng Y.-M, Cai C, Yanga R.-C. RSC Adv. 2013; 3: 7182
- 3b May BC. H, Abell AD. J. Chem. Soc., Perkin Trans. 2002; 172
- 3c Holland GF, Pereira JN. J. Med. Chem. 1967; 10: 149
- 3d Gaponik PN, Voitekhovich SV, Ivashkevich OA. Russ. Chem. Rev. 2006; 75: 507
- 4 Sharma YC, Singh B, Korstad J. Biofuels, Bioprod. Biorefin. 2011; 1: 69
- 5a Karimi B, Mansouri F, Mirzaei HM. ChemCatChem. 2015; 7: 1736
- 5b Hong X. Gao Y., Twamley B., Shreeve J. M. 2004; 17: 191
- 5c Singh RP, Verma RD, Meshri DT, Shreeve JM. Angew. Chem. Int. Ed. 2006; 45: 3584
- 6 Nozari A, Hassani H, Karimian A. Russ. J. Org. Chem. 2023; 59: 1370
- 7 Varala R, Babu BH. In Molecular Docking, Chap. 4. Vlachakis DP. IntechOpen; London: 2018: 52
- 8a Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 4101
- 8b Alterman M, Hallberg A. J. Org. Chem. 2000; 65: 7984
- 8c Demko ZP, Sharpless KB. J. Org. Chem. 2001; 66: 7945
- 8d Gutmann B, Roduit J.-P, Roberge D, Kappe CO. Angew. Chem. Int. Ed. 2010; 49: 7101
- 8e Roh J, Vávrová K, Hrabálek A. Eur. J. Org. Chem. 2012; 6101
- 8f Biot C, Bauer H, Schirmer RH, Davioud-Charvet E. J. Med. Chem. 2004; 47: 5972
- 8g Cano PA, Islas-Jácome A, González-Marrero J, Yépez-Mulia L, Calzada F, Gámez-Montaño R. Bioorg. Med. Chem. 2014; 22: 1370
- 9 Zhu J. Eur. J. Org. Chem. 2003; 1133
- 10 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 11a Guggilapu SD, Prajapti SK, Nagarsenkar A, Gupta KK, Babu BN. Synlett 2016; 27: 1241
- 11b Hantzsch A, Vagt A, Justus L. Ann. Chem. 1901; 314: 339
- 12 Mittal R, Awasthi SK. Synthesis 2019; 51: 3765
- 13 Mitra B, Mukherjee S, Pariyar GC, Ghosh P. Tetrahedron Lett. 2018; 59: 1385
- 14a Nandi GC, Laali KK. Tetrahedron Lett. 2013; 54: 2177
- 14b Dauzonne D, Demerseman P, Royer R. Synthesis 1981; 739
- 15 Ghosh P, Saha B, Pariyar GC, Tamang A, Subba R. Tetrahedron Lett. 2016; 57: 3618
- 16 Das VK, Harsh SN, Karak N. Tetrahedron Lett. 2016; 57: 549
- 17 Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. RSC Adv. 2017; 7: 1484
- 18 Hosseinzadeh R, Golchoubian H, Nouzarian M. Res. Chem. Intermed. 2015; 41: 4713
- 19 Rokade BV, Prabhu RK. J. Org. Chem. 2012; 77: 5364
- 20 Verma F, Sahu A, Singh PK, Rai A, Singh M, Rai VK. Green Chem. 2018; 20: 3783
- 21 Khoshnoud A, Pourali AR, Behniafar H. Lett. Org. Chem. 2022; 19: 408
- 22 He Z, Feng L, Wu P, Li S, Kazemnejadi M. ChemistrySelect 2020; 5: 7753
- 23 Abdollahi-Alibeik M, Moaddeli A. New. J. Chem. 2015; 39: 2116
- 24 Ahmadi A, Sedaghat T, Motamedi H, Azadi R. Appl. Organomet. Chem. 2020; 34: e5572
- 25 Ramírez-Coronel AA, Sivaraman R, Ahmed YM, Abass RR, Kareem HA. Polycycl. Aromat. Compd. 2024; 44: 577
- 26a Waheed M, Ahmed N, Alsharif MA, Alahmdi MI, Mukhtar S. ChemistrySelect 2017; 2: 7946
- 26b Bhakta A, Mukhtar S, Anwar S, Haider S, Alahmdi MI, Parveen H, Alsharif MA, Wani MY, Chakrabarty A, Hassan MI, Ahmed N. RSC Med. Chem. 2024; 15: 1942
- 27 Ganboa I, Palomo C. Synth. Commun. 1983; 13: 999
- 28 Augustine JK, Bombrun A, Attaa RN. Synlett 2011; 2223
- 29a Baghershiroudia M, Bafandeha FT, Safaa KD, Panahib PN. Russ. J. Appl. Chem. 2021; 94: 230
- 29b Zhao H. J. Labelled Compd. Radiopharm. 2008; 51: 293
- 30 1H-Tetrazoles 2a–z; General Procedure (CAUTION! Sodium azide can explode on heating and is highly toxic. Contact of metal azides with acids liberates highly toxic and explosive hydrazoic acid.) NH4N3 (0.5 mmol) and H2SO4 (0.5 mmol) were added sequentially to a round-bottomed flask containing the appropriate aldehyde (0.5 mmol) in EtOH (1 mL), and the resulting mixture was stirred at r.t. for 10 min. A solution of NaN3 (0.5 mmol) in H2O (1 mL) was then added, and the resulting mixture was stirred for another 2 h at 80 °C. When the starting material had been consumed, the mixture was cooled to r.t. and ice-cold H2O was added to give a solid precipitate. The precipitate was collected and washed with 20% CH2Cl2–hexane to give the pure product. 5-Phenyl-1H-tetrazole (2a) White solid; yield: 67.1 mg (92%); mp 216–218 °C. IR (KBr): 2981, 2908, 2794, 1856, 1608, 1563, 1485, 1466, 1163, 1084, 1056, 993, 726 cm–1. 1H NMR (500 MHz, DMSO-d6): δ = 8.05–7.95 (m, 2 H), 7.61–7.48 (m, 3 H). 13C NMR (126 MHz, DMSO-d6): δ = 160.59, 136.52, 134.70, 132.25, 129.44. Anal. Calcd for C7H6N4: C, 57.53; H, 4.14; N, 38.34. Found: C, 57.48; H, 4.12; N, 38.40. 2-(1H-Tetrazol-5-yl)phenol (2b) White solid; yield: 73.7 mg (91%); mp 220–222 °C. IR (KBr): 3194, 2831, 2563, 1953, 1781, 1617, 1544, 1489, 1465, 1301, 1218, 997, 748 cm–1. 1H NMR (500 MHz, DMSO-d6): δ = 7.95 (dd, J = 7.8, 1.8 Hz, 1 H), 7.37 (ddd, J = 8.7, 7.3, 1.8 Hz, 1 H), 7.04 (dd, J = 8.3, 1.1 Hz, 1 H), 6.96 (td, J = 7.6, 1.1 Hz, 1 H). 13C NMR (126 MHz, DMSO-d6): δ = 160.60, 156.91, 137.93, 134.35, 125.00, 121.63, 115.80. Anal. Calcd for C7H6N4O: C, 51.85; H, 3.73; N, 34.55. Found: C, 51.96; H, 3.71; N, 34.46.