RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2025; 57(07): 1306-1312
DOI: 10.1055/a-2508-3790
DOI: 10.1055/a-2508-3790
psp
Nickel(II)-Catalyzed Cycloisomerization of 1,6-Dienes
This work was supported by the National Natural Science Foundation of China (22401070), Anhui Postdoctoral Science Foundation (2023B666), and the Fundamental Research Funds for the Central Universities of China (PA2024GDSK0102).

Abstract
A nickel-catalyzed protocol for the cycloisomerization of 1,6-dienes has been developed. Using commercially available NiBr₂ and PPh₃ as catalysts, Zn as a reductant, and ZnI₂ as an additive, the methodology efficiently converts various 1,6-dienes into pyrrolidine derivatives in excellent yields and high selectivity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2508-3790.
- Supporting Information
Publikationsverlauf
Eingereicht: 02. Dezember 2024
Angenommen nach Revision: 26. Dezember 2024
Accepted Manuscript online:
03. Januar 2025
Artikel online veröffentlicht:
20. Februar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2a Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 2b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
- 3 Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J.-k, Matyjaszewski K, Antonietti M, Yuan J. Chem. Rev. 2020; 120: 9363
- 4a Mori M, Kuroda S, Zhang C.-S, Sato Y. J. Org. Chem. 1997; 62: 3263
- 4b Steele JC. P, Veitch NC, Kite GC, Simmonds MS. J, Warhurst DC. J. Nat. Prod. 2002; 65: 85
- 4c Odagiri T, Inagaki H, Sugimoto Y, Nagamochi M, Miyauchi RN, Kuroyanagi J, Kitamura T, Komoriya S, Takahashi H. J. Med. Chem. 2013; 56: 1974
- 4d Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 4e Türkmen YE, Gravel M, Rawal VH. J. Org. Chem. 2016; 81: 10454
- 5a Ghia P, Pluta A, Wach M, Lysak D, Kozak T, Simkovic M, Kaplan P, Kraychok I, Illes A, de la Serna J, Dolan S, Campbell P, Musuraca G, Jacob A, Avery E, Lee JH, Liang W, Patel P, Quah C, Jurczak W. J. Clin. Oncol. 2020; 38: 2849
- 5b Deodhar A, Van den Bosch F, Poddubnyy D, Maksymowych WP, van der Heijde D, Kim T.-H, Kishimoto M, Blanco R, Duan Y, Li Y, Pangan AL, Wung P, Song I.-H. Lancet 2022; 400: 369
- 6a Cui J, Wang H, Song J, Chi X, Meng L, Liu Q, Zhang D, Dong Y, Liu H. Org. Biomol. Chem. 2017; 15: 8508
- 6b Liao Y, Zhou B, Xia Y, Liu X, Lin L, Feng X. ACS Catal. 2017; 7: 3934
- 6c Meng D, Tang Y, Wei J, Shi X, Yang M. Chem. Commun. 2017; 53: 5744
- 6d Wang Z.-P, Wu Q, Jiang J, Li Z.-R, Peng X.-J, Shao P.-L, He Y. Org. Chem. Front. 2018; 5: 36
- 6e Qiao J.-B, Zhang Y.-Q, Yao Q.-W, Zhao Z.-Z, Peng X, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 12961
- 6f Chang X, Cheng X, Wang C.-J. Chem. Sci. 2022; 13: 4041
- 6g Yoshimura A, Hanzawa R, Fuwa H. Org. Lett. 2022; 24: 6237
- 7a Bray KL, Charmant JP. H, Fairlamb IJ. S, Lloyd-Jones GC. Chem. Eur. J. 2001; 7: 4205
- 7b Goj LA, Widenhoefer RA. J. Am. Chem. Soc. 2001; 123: 11133
- 7c Heumann A, Giordano L, Tenaglia A. Tetrahedron Lett. 2003; 44: 1515
- 7d Song Y.-J, Jung IG, Lee H, Lee YT, Chung YK, Jang H.-Y. Tetrahedron Lett. 2007; 48: 6142
- 7e Feng L, Gan Z, Nie X, Sun P, Bao J. Catal. Commun. 2010; 11: 555
- 7f Du W, Tang G, Chen Y, Xu D, Guo H. Org. Chem. Front. 2014; 1: 919
- 8 Li H.-L, Huang W.-S, Ling F.-Y, Li L, Yan J.-H, Xu H, Xu L.-W. Chem. Asian. J. 2021; 16: 1730
- 9a Fürstner A, Ackermann L. Chem. Commun. 1999; 95
- 9b Çetinkaya B, Demir S, Özdemir I, Toupet L, Sémeril D, Bruneau C, Dixneuf PH. New J. Chem. 2001; 25: 519
- 9c Yamamoto Y, Nakagai Y.-i, Ohkoshi N, Itoh K. J. Am. Chem. Soc. 2001; 123: 6372
- 9d Özdemir I, Çetinkaya E, Çetinkaya B, Çiçek M, Sémeril D, Bruneau C, Dixneuf P.H. Eur. J. Inorg. Chem. 2004; 418
- 9e Terada Y, Arisawa M, Nishida A. Angew. Chem. Int. Ed. 2004; 43: 4063
- 9f Fairlamb IJ. S, McGlacken GP, Weissberger F. Chem. Commun. 2006; 988
- 9g Tracz A, Matczak M, Urbaniak K, Skowerski K. Beilstein J. Org. Chem. 2015; 11: 1823
- 9h Tracz A, Gawin A, Bieniek M, Olszewski TK, Skowerski K. New J. Chem. 2018; 42: 8609
- 10 Okamoto S, Livinghouse T. J. Am. Chem. Soc. 2000; 122: 1223
- 11a Radetich B, RajanBabu TV. J. Am. Chem. Soc. 1998; 120: 8007
- 11b Böing C, Franciò G, Leitner W. Chem. Commun. 2005; 1456
- 11c Nečas D, Turský M, Tišlerová I, Kotora M. New J. Chem. 2006; 30: 671
- 11d Diez-Holz CJ, Böing C, Franciò G, Hölscher M, Leitner W. Eur. J. Org. Chem. 2007; 2995
- 11e Nečas D, Ramella D, Rudovská I, Kotora M. J. Mol. Catal. A: Chem. 2007; 274: 78
- 11f Böing C, Hahne J, Franciò G, Leitner W. Adv. Synth. Catal. 2008; 350: 1073
- 11g Biswas S, Zhang A, Raya B, RajanBabu TV. Adv. Synth. Catal. 2014; 356: 2281
- 11h Schmitz C, Leitner W, Franciò G. Chem. Eur. J. 2015; 21: 10696
- 11i Li K, Li M.-L, Zhang Q, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2018; 140: 7458
- 11j Zhao T.-Y, Li K, Yang L.-L, Zhu S.-F, Zhou Q.-L. Org. Lett. 2021; 23: 3814
- 12 Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357