RSS-Feed abonnieren
DOI: 10.1055/a-2508-9961
A Decade of Piperazine-Based Small Molecules Approved by U.S. FDA: Exploring the Medicinal Chemistry Impact of this Versatile Pharmacophore

Abstract
Heterocyclic scaffolds, particularly azaheterocycles, are part of numerous clinically relevant drugs. We have explored U.S. FDA approved small-molecule drugs (2012–2023) containing piperazine as a core ring system. The analysis revealed that 36 drugs approved in the last decade possess piperazine ring systems, with 15 drugs falling within the anticancer category. The CYP3A4 was found to be the primary enzyme responsible for the metabolism of these drugs, and most of them undergo fecal excretion. Considering stereochemical aspects, nine piperazine-containing drugs were found to be with chiral centers. The perspective is a concerted effort to cover not only the drugs bearing piperazine rings containing drugs but also provides a thorough discussion and commentaries on their pharmacokinetics and pharmacodynamics aspects. This enriches the article’s medicinal chemistry aspect and makes it a good read for the medicinal and allied science community.
1 Introduction
2 Insights into the Chemistry of Piperazine and Comparative Analysis of Molecular and Chemical Spacing Descriptors
3 Synthetic Strategies to Develop Piperazine Derivative
4 Comparative Analysis of the Pharmacological Class of the Approved Drugs Possessing a Piperazine Ring System
5 Delving Deeper into the Approved Drugs Bearing the Piperazine-Based Core Systems
6 Analysis
7 Conclusion
Key words
heterocycles - piperazine - drug discovery - US FDA approved - chemical space - molecular descriptors - chemical analysis - metabolismPublikationsverlauf
Eingereicht: 09. November 2024
Angenommen nach Revision: 30. Dezember 2024
Accepted Manuscript online:
30. Dezember 2024
Artikel online veröffentlicht:
24. Februar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Rotella DP. Heterocycles in Drug Discovery: Properties and Preparation. In Advances in Heterocyclic Chemistry. Meanwell NA, Lolli ML. Academic Press Inc.; Amsterdam: 2021: 149-183
- 2 Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
- 3 Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. Naunyn-Schmiedebergs Arch. Pharmacol. 2023; 396: 1619
- 4 Ling Y, Hao Z.-Y, Liang D, Zhang C.-L, Liu Y.-F, Wang Y. Drug Des. Devel. Ther. 2021; 15: 4289
- 5 Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
- 6 Shalmali N, Ali MR, Bawa S. Mini-Rev. Med. Chem. 2018; 18: 142
- 7 Moor LF. E, Vasconcelos TR. A, da R Reis R, Pinto LS. S, da Costa TM. Mini-Rev. Med. Chem. 2021; 21: 2209
- 8 Alam MA. Thiazole, a Privileged Scaffold in Drug Discovery. In Privileged Scaffolds in Drug Discovery. Yu B, Li N, Fu C. Elsevier; Amsterdam: 2023: 1-19
- 9 Khan J, Rani A, Aslam M, Maharia RS, Pandey G, Nand B. Tetrahedron 2024; 162: 134122
- 10 Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
- 11 Gomtsyan A. Chem. Heterocycl. Compd. 2012; 48: 7
- 12 Prasad S, Gupta SC, Aggarwal BB. Trends Pharmacol. Sci. 2016; 37: 435
- 13 Kubinyi HJ. Recept. Signal Transduction Res. 1999; 19: 15
- 14 Meyer EA, Castellano RK, Diederich F. Angew. Chem. Int. Ed. 2003; 42: 1210
- 15 Balaban AT, Oniciu DC, Katritzky AR. Chem. Rev. 2004; 104: 2777
- 16 Marson CM. Adv. Heterocycl. Chem. 2017; 121: 13
- 17 Dombrowski AW, Gesmundo NJ, Aguirre AL, Sarris KA, Young JM, Bogdan AR, Martin MC, Gedeon S, Wang Y. ACS Med. Chem. Lett. 2020; 11: 597
- 18 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 19 Brown DG, Wobst HJ. J. Med. Chem. 2021; 64: 2312
- 20 Barnes L, Birkinshaw TN, Senior AJ, Brügge OS, Lewis W, Argent SP, Moody CJ, Nortcliffe A. Bioorg. Med. Chem. 2024; 101: 117636
- 21 Tsien J, Hu C, Merchant RR, Qin T. Nat. Rev. Chem. 2024; 8: 605
- 22 Mortensen KT, Wong DS. Y, King TA, Sore HF, Spring DR. Org. Biomol. Chem. 2023; 21: 4591
- 23 Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
- 24 Zolotareva D, Zazybin A, Dauletbakov A, Belyankova Y, Giner Parache B, Tursynbek S, Seilkhanov T, Kairullinova A. Molecules 2024; 29: 3043
- 25 Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J. Med. Chem. 2024; 67: 11622
- 26 Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. Expert Opin. Drug Discovery 2022; 17: 969
- 27 Patel RV, Won Park S. Mini-Rev. Med. Chem. 2013; 13: 1579
- 28 Faizan M, Kumar R, Mazumder A, Salahuddin Salahuddin, Kukreti N, Kumar A, Chaitanya MV. N. L. Chem. Biol. Drug Design 2024; 103: e14537
- 29 Talevi A, Bellera CL, Di Ianni M, Duchowicz PR, Bruno-Blanch LE, Castro EA. Curr. Comput.-Aided Drug Des. 2012; 8: 172
- 30 Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C. Curr. Comput.-Aided Drug Des. 2008; 4: 322
- 31 Tsuneda T, Song J.-W, Suzuki S, Hirao K. J. Chem. Phys. 2010; 133: 174101
- 32 Minsky A, Meyer AY, Rabinovitz M. Tetrahedron 1985; 41: 785
- 33 Weidner JP, Block SS. J. Med. Chem. 1967; 10: 1167
- 34 Pospelov EV, Sukhorukov AY. Int. J. Mol. Sci. 2023; 24: 11794
- 35 Burton TF, Garisoain Z, Chaix C, Aassine J, Virapin E, Voronova A, Pinaud J, Giani OJ. A. O. ACS Omega 2024; 9: 28583
- 36 Patil P, Madhavachary R, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A. Org. Lett. 2017; 19: 642
- 37 Kitchen LJ, Pollard CB. J. Am. Chem. Soc. 1947; 69: 854
- 38 Al-Ghorbani M, Bushra BA, Zabiulla S, Mamatha SV, Khanum SA. Res. J. Pharm. Technol. 2015; 8: 611
- 39 Luescher MU, Vo C.-VT, Bode JW. Org. Lett. 2014; 16: 1236
- 40 Ye Z, Adhikari S, Xia Y, Dai M. Nat. Commun. 2018; 9: 721
- 41 Yao L.-F, Wang Y, Huang K.-W. Org. Chem. Front. 2015; 2: 721
- 42 Papenbrock J, Schmidt A. Eur. J. Biochem. 2000; 267: 5571
- 43 Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, Pon A, Cox J, Chin NE, Strawbridge SA, Garcia-Patino M, Kruger R, Sivakumaran A, Sanford S, Doshi R, Khetarpal N, Fatokun O, Doucet D, Zubkowski A, Yahya Rayat D, Jackson H, Harford K, Anjum A, Zakir M, Wang F, Tian S, Lee B, Liigand J, Peters H, Wang RQ. R, Nguyen T, So D, Sharp M, da Silva R, Gabriel C, Scantlebury J, Jasinski M, Ackerman D, Jewison T, Sajed T, Gautam V, Wishart DS. Nucleic Acids Res. 2024; 52: D1265
- 44 Rozman C, Montserrat E. N. Engl. J. Med. 1995; 333: 1052
- 45 Passamonti F, Mora B. Blood 2023; 141: 1954
- 46 Rubnitz JE, Gibson B, Smith FO. Pediatr. Clin. North Am. 2008; 55: 21
- 47 Razumilava N, Gores GJ. Lancet 2014; 383: 2168
- 48 Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Nat. Rev. Dis. Primers 2016; 2: 1
- 49 Gibbs JB. J. Clin. Invest. 2000; 105: 9
- 50 Nam NH, Parang K. Curr. Drug Targets 4: 159
- 51 Parang K, Till JH, Ablooglu AJ, Kohanski RA, Hubbard SR, Cole PA. Nat. Struct. Biol. 2001; 8: 37
- 52 Hurley LH. J. Med. Chem. 1989; 32: 2027
- 53 Schmidt CJ, Sorensen SM, Kenne JH, Carr AA, Palfreyman MG. Life Sci. 1995; 56: 2209
- 54 Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK. Neuropsychopharmacology 2007; 32: 1715
- 55 Hay DL, Walker CS. Headache: J. Head Face Pain 2007; 57: 625
- 56 Lunn MR, Wang CH. Lancet 2008; 371: 2120
- 57 Katz M, DeRogatis LR, Ackerman R, Hedges P, Lesko L, Garcia MJr, Sand M. J. Sex. Med. 2013; 10: 1807
- 58 Diemunsch P, Grélot L. Drugs 2000; 60: 533
- 59 Joly BS, Coppo P, Veyradier A. Blood 2017; 129: 2836
- 60 Seval N, Frank C, Kozal M. Expert Rev. Anti Infect. Ther. 2021; 19: 961