Subscribe to RSS
DOI: 10.1055/a-2513-8629
Microwave-Assisted Copper-Catalyzed Electrophilic Amination of Arylboronic Acids: A Rapid Approach to Arylhydrazides
B.D. thanks to UGC-New Delhi for a fellowship. A.B. thanks SVNIT Surat for the fellowship. T.N. thanks the Director, SVNIT, Surat for providing a seed grant for the research. T.N. also gratefully acknowledges financial support from the CSIR-HRDG, India [Project File No. 02(0449)/21/EMR-II]. V.K. thanks NIPER, Hyderabad, and SERB (SB/SRS/2022-23/130/CS) for financial support.

Abstract
We present a copper-catalyzed rapid and efficient method for the electrophilic amination of arylboronic acids with azodicarboxylates under microwave irradiation to synthesize aryl-substituted hydrazines. This transformation encompasses a wide range of substituted boronic acids and azodicarboxylates to provide the corresponding products in good to excellent yields. The key features of this reaction are its broad substrate scope, high functional-group tolerance, good to excellent yields, and short reaction time.
Keywords
amination - boronic acids - copper catalysis - diethyl azodicarboxylate - microwave-assistedSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2513-8629.
- Supporting Information
Publication History
Received: 25 October 2024
Accepted after revision: 09 January 2025
Accepted Manuscript online:
09 January 2025
Article published online:
21 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Reich MF, Fabio PF, Lee VJ, Kuck NA, Testa RT. J. Med. Chem. 1989; 32: 2474
- 1b Dekeyser M, McDonald PT, Angle GW. Jr. J. Agric. Food Chem. 1994; 42: 1358
- 1c Dekeyser MA, McDonald PT. US 5367093, 1994
- 1d Millington CR, Quarell R, Lowe G. Tetrahedron Lett. 1998; 39: 7201
- 1e Wang Z, Skerlj RT, Bridger GJ. Tetrahedron Lett. 1999; 40: 3543
- 1f Chee G.-L, Park SB, Dekeyser MA. US 6093843, 2000
- 1g Aoki Y, Saito Y, Sakamoto T, Kikugawa Y. Synth. Commun. 2000; 30: 131
- 1h Wolter M, Klapars A, Buchwald SL. Org. Lett. 2001; 3: 3803
- 1i Arterburn JB, Rao KV, Ramdas R, Dible BR. Org. Lett. 2001; 3: 1351
- 1j Nara S, Sakamoto T, Miyazawa E, Kikugawa Y. Synth. Commun. 2003; 33: 87
- 1k Narang R, Narasimhan B, Sharma S. Curr. Med. Chem. 2012; 19: 569
- 2 Perwitasari O, Johnson S, Yan X, Howerth E, Shacham S, Landesman Y, Baloglu E, McCauley D, Tamir S, Tompkins SM, Tripp RA. J. Virol. 2014; 88: 10228
- 3 Wang EL, Hamada M, Okami Y, Umezawa H. J. Antibiot., Ser. A 1966; 19: 216
- 4a Blair LM, Sperry J. J. Nat. Prod. 2013; 76: 794
- 4b Le Goff G, Ouazzani J. Bioorg. Med. Chem. 2014; 22: 6529
- 5a Kabalka GW, Guchhait SK. Org. Lett. 2003; 5: 4129
- 5b Brandes S, Bella M, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
- 5c Brandes S, Niess B, Bella M, Prieto A, Overgaard J, Jørgensen KA. Chem. Eur. J. 2006; 12: 6039
- 5d Ma F.-F, Peng Z.-Y, Li W.-F, Xie X.-M, Zhang Z. Synlett 2011; 2555
- 5e Gu L, Neo BS, Zhang Y. Org. Lett. 2011; 13: 1872
- 5f Guo R, Li K.-N, Liu B, Zhu H.-J, Fan Y.-M, Gong L.-Z. Chem. Commun. 2014; 50: 5451
- 5g Bai H.-Y, Tan F.-X, Liu T.-Q, Zhu G.-D, Tian J.-M, Ding T.-M, Chen Z.-M, Zhang S.-Y. Nat. Commun. 2019; 10: 3063
- 5h Zhao R, Zhou Z, Liu J, Wang X, Zhang Q, Li D. Org. Lett. 2020; 22: 8144
- 5i Wang D, Jiang Q, Yang X. Chem. Commun. 2020; 56: 6201
- 5j Chen Y, Zhu C, Guo Z, Liu W, Yang X. Angew. Chem. Int. Ed. 2021; 60: 5268
- 6a Cheng Y, Zhao M, Wang M.-X, Wang L.-B, Huang Z.-T. Synth. Commun. 1995; 25: 1339
- 6b Metallinos C, Nerdinger S, Snieckus V. Org. Lett. 1999; 1: 1183
- 6c Macklin TK, Snieckus V. Org. Lett. 2005; 7: 2519
- 6d Murakami M, Ishida N, Miura T. Chem. Lett. 2007; 36: 476
- 6e Petrov AA, Pakal’nis VV, Zerov AV, Yakimovich SI. Russ. J. Org. Chem. 2017; 53: 381
- 6f Nishimoto Y, Hirase R, Yasuda M. Org. Lett. 2018; 20: 3651
- 7a Gephart RT. III, Warren TH. Organometallics 2012; 31: 7728
- 7b Ton TM. U, Himawan F, Chang JW. W, Chan PW. H. Chem. Eur. J. 2012; 18: 12020
- 7c Liwosz TW, Chemler SR. Chem. Eur. J. 2013; 19: 12771
- 7d Deldaele C, Evano G. ChemCatChem 2016; 8: 1319
- 7e Hendrick CE, Bitting KJ, Cho S, Wang Q. J. Am. Chem. Soc. 2017; 139: 11622
- 7f Shaughnessy KH, Ciganek E, DeVasher RB. Copper-Catalyzed Amination of Aryl and Alkenyl Electrophiles . Wiley; Hoboken: 2017
- 7g Yang Q.-L, Wang X.-Y, Lu L.-P, Fang P, Mei T.-S. J. Am. Chem. Soc. 2018; 140: 11487
- 7h Carsch KM, DiMucci IM, Iovan DA, Li A, Zheng S.-L, Titus CJ, Lee SJ, Irwin KD, Nordlund D, Lancaster KM, Betley TA. Science 2019; 365: 1138
- 7i Li Y, Xu L, Wei Y. Org. Biomol. Chem. 2022; 20: 9742
- 7j Dai L, Chen Y.-Y, Xiao L.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2023; 62: e202304427
- 7k Strauss MJ, Liu KX, Greaves ME, Dahl JC, Kim S.-T, Wu Y.-J, Schmidt MA, Scola PM, Buchwald SL. J. Am. Chem. Soc. 2024; 146: 18616
- 8a Modern Amination Methods . Ricci A. Wiley-VCH; Weinheim: 2000
- 8b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley; Weinheim: 2008
- 9a Beak P, Kokko BJ. J. Org. Chem. 1982; 47: 2822
- 9b Erdık E, Ay M. Chem. Rev. 1989; 89: 1947
- 9c Casarini A, Dembech P, Lazzari D, Marini E, Reginato G, Ricci A, Seconi G. J. Org. Chem. 1993; 58: 5620
- 9d Alberti A, Cane F, Dembech P, Lazzari D, Ricci A, Seconi G. J. Org. Chem. 1996; 61: 1677
- 9e Bernardi P, Dembech P, Fabbri G, Ricci A, Seconi G. J. Org. Chem. 1999; 64: 641
- 9f Erdık E, Daşkapan T. J. Chem. Soc., Perkin Trans. 1 1999; 3139
- 9g Kitamura M, Suga T, Chiba S, Narasaka K. Org. Lett. 2004; 6: 4619
- 9h Berman AM, Johnson JS. J. Org. Chem. 2005; 70: 364
- 9i Erdık E, Ateş S. Synth. Commun. 2006; 36: 2813
- 9j Berman AM, Johnson JS. J. Org. Chem. 2006; 71: 219
- 9k Campbell MJ, Johnson JS. Org. Lett. 2007; 9: 1521
- 9l Zhang Z, Yu Y, Liebeskind LS. Org. Lett. 2008; 10: 3005
- 10a Mitchell H, Leblanc Y. J. Org. Chem. 1994; 59: 682
- 10b An DK, Hirakawa K, Okamoto S, Sato F. Tetrahedron Lett. 1999; 40: 3737
- 10c Sapountzis I, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 897
- 10d Sinha P, Kofink CC, Knochel P. Org. Lett. 2006; 8: 3741
- 11 Uemura T, Chatani N. J. Org. Chem. 2005; 70: 8631
- 12 Muñiz K, Iglesias A. Angew. Chem. Int. Ed. 2007; 46: 6350
- 13 Lau Y.-F, Chan C.-M, Zhou Z, Yu W.-Y. Org. Biomol. Chem. 2016; 14: 6821
- 14a Lew A, Krutzik PO, Hart ME, Chamberlin AR. J. Comb. Chem. 2002; 4: 95
- 14b de la Hoz A, Díaz-Ortiz Á, Moreno A. Chem. Soc. Rev. 2005; 34: 164
- 14c Ju Y, Kumar D, Varma RS. J. Org. Chem. 2006; 71: 6697
- 14d Murthy YL. N, Govindh B, Diwakar BS, Nagalakshmi K, Venu R. J. Iran. Chem. Soc. 2011; 8: 292
- 14e Sidiq N, Bhat MA, Khan KZ, Khuroo MA. Heteroat. Chem. 2012; 23: 373
- 14f Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
- 14g Pathak K, Ameta C, Ameta R, Punjabi PB. J. Heterocycl. Chem. 2016; 53: 1697
- 14h Kokel A, Schäfer C, Török B. Green Chem. 2017; 19: 3729
- 14i Sharma N, Sharma UK, Van der Eycken EV. In Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd ed. Cue B. W. 2018; 441
- 14j Díaz-Ortiz Á, Prieto P, de la Hoz A. Chem. Rec. 2019; 19: 85
- 14k Meera G, Rohit KR, Saranya S, Anilkumar G. RSC Adv. 2020; 10: 36031
- 14l Kumar K. J. Heterocycl. Chem. 2022; 59: 205
- 14m Gabano E, Ravera M. Molecules 2022; 27: 4249
- 14n Majhi S, Mondal PK. Curr. Microwave Chem. 2023; 10: 135
- 15 Arylhydrazides 3a–z; General Procedure An oven-dried, single-necked, round-bottomed flask containing a magnetic stirrer bar was charged with the appropriate arylboronic acid 1 (0.3 mmol), dialkyl azodicarboxylate 2 (0.2 mmol), Cu(OAc)2∙H2O (10 mol%), and MeCN (2 mL) under air. The flask was fitted with a condenser, and the mixture was vigorously stirred and subjected to microwave heating (400 W) at 80 °C for 20 min. When the reaction was complete, the mixture was filtered through a Celite pad with EtOAc as the washing solvent. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc]. Diethyl 1-Phenylhydrazine-1,2-dicarboxylate (3a) Yellow oil; yield: 99%. 1H NMR (500 MHz, CDCl3): δ = 7.60 (s, 1 H), 7.41 (d, J = 8.0 Hz, 2 H), 7.31 (t, J = 7.8 Hz, 2 H), 7.18 (t, J = 7.4 Hz, 1 H), 4.20 (dq, J = 14.6, 7.1 Hz, 4 H), 1.24 (t, J = 7.2 Hz, 6 H). 13C NMR (126 MHz, CDCl3): δ = 156.59, 155.14, 141.81, 128.81, 126.54, 124.48, 63.18, 62.45, 14.59. HRMS (ESI): m/z [M + H]+ calcd for C12H17N2O4: 253.1183; found: 253.1185