Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2517-2139
DOI: 10.1055/a-2517-2139
letter
Emerging Trends in Organic Chemistry: A Focus on India
Baylis–Hillman Adducts as a Valuable Source for Synthesis of Functionalized [4,4,4]-Propellone Dilactone Derivatives
We thank to University Grants Commission (UGC), New Delhi for funding this project. M.P. and D.M. thank Central University Gujerat for their non-net fellowship.

Abstract
A simple and facile synthesis of functionalized [4,4,4]-propellone dilactone derivatives through dialkylation of cyclic 1,3-diketones with Baylis–Hillman adducts and subsequent dilactonization is described. This methodology is appealing because it is reliable and scalable (the products can be synthesized on a gram scale). The tricyclic products can be exploited for their biological activity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2517-2139.
- Supporting Information
Publication History
Received: 09 December 2024
Accepted after revision: 15 January 2025
Accepted Manuscript online:
15 January 2025
Article published online:
28 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yadav MB, Bhosie SR, Jeong YT. Tetrahedron Lett. 2022; 98: 153815
- 1b Nassar Y, Piva O. Org. Biomol. Chem. 2021; 19: 9251
- 1c Alizadeh A, Bagherinejad A, Khanpour M. Synthesis 2021; 53: 4059
- 1d Dilmaç AM, Wezeman T, Bär RM, Bräse S. Nat. Prod. Rep. 2020; 37: 224
- 1e Rezvanian A, Salimi M, Zadsirjan V, Mahmoodi F, Heravi MM. J. Heterocycl. Chem. 2020; 57: 4192
- 1f Nassar Y, Piva O. Org. Biomol. Chem. 2020; 18: 5811
- 1g Beyrati M, Hasaninejad A. RSC Adv. 2018; 8: 14171
- 1h Kotha S, Cheekatla SR, Mandal B. Eur. J. Org. Chem. 2017; 4277
- 1i Schneider LM, Schmiedel VM, Pecchioli T, Lentz D, Merten C, Christmann M. Org. Lett. 2017; 19: 2310
- 1j Hassan AA, Mohamed SK, Abdel-Latif FF, Mostafa SM, Abdel-Aziz M, Mague JT, Akkurt M. Synlett 2016; 27: 412
- 1k Sirouspour M, Souri S. J. Heterocycl. Chem 2016; 53: 147
- 2a Yavari I, Malekafzali A, Skoulika S. Tetrahedron Lett. 2014; 55: 3154
- 2b Rezvanian A, Alizadeh A, Zhu L.-G. Synlett 2012; 2526
- 2c Barjaua J, Schnakenburg G, Waldvogel SR. Synthesis 2011; 2054
- 2d Nagase H, Yamamoto N, Nemoto T, Yoza K, Kamiya K, Hirono S, Momen S, Izumimoto N, Hasebe K, Mochizuki H, Fujii H. J. Org. Chem. 2008; 73: 8093
- 2e Nowicka-Scheibe J, Sośnicki JG, Sawka-Dobrowolska W. Tetrahedron Lett. 2007; 48: 5439
- 2f Debroy P, Lindeman SV, Rathore R. Org. Lett. 2007; 9: 4091
- 2g Crimmins MT, Hauser EB. Org. Lett. 2000; 2: 281
- 2h Lyshchikov AN, Sheverdov VP, Pavlov VV, Nasakin OE, Khrustalev VN. Tetrahedron Lett. 1998; 39: 4705
- 3a Lee H.-Y, Kim D.-I, Kim S. Chem. Commun. 1996; 1539
- 3b Dave PR, Forohar F, Axenrod T, Das KK, Qi L, Watnick C, Yazdekhasti H. J. Org. Chem. 1996; 61: 8897
- 3c Dave PR, Forohar F, Axenrod T, Qi L, Watnick C, Yazdekhasti H. Tetrahedron Lett. 1994; 35: 8965
- 3d Crimmins MT, Jung DK, Gray JL. J. Am. Chem. Soc. 1993; 115: 3146
- 3e Mehta G, Subrahmanyam D. J. Chem. Soc., Perkin Trans. 1 1991; 395
- 3f Yamago S, Nakamura E. J. Chem. Soc., Chem. Commun 1988; 1112
- 3g Ashkenazi P, Kapon M, Piantini U, Von Philipsborn W, Ginsburg D. Helv. Chim. Acta 1985; 68: 614
- 3h Alder RW, Arrowsmith RJ, Bryce MR, Eastment P, Orpen AG. J. Chem. Soc., Perkin Trans. 2 1983; 1519
- 3i Eaton PE, Jobe PG, Nyi K. J. Am. Chem. Soc. 1980; 102: 6636
- 3j Kakiuchi K, Tobe Y, Odaira Y. J. Org. Chem. 1980; 45: 729
- 4a Hébert M, Bellavance G, Barriault L. J. Am. Chem. Soc. 2022; 144: 17792
- 4b Chen Y, Feng Z, Shen M, Lin W, Wang Y, Wang S, Li C, Wang S, Chen M, Shan W, Xie X.-Q. ACS Omega 2020; 5: 2428
- 4c Pszczolkowski MA, Durden K, Sellars S, Cowell B, Brown JT. J. Agric. Food Chem. 2011; 59: 10879
- 4d Lee H.-S, Kim M.-J. J. Agric. Food Chem. 2002; 50: 1840
- 4e Lichtblau D, Berger JM, Nakanishi K. J. Nat. Prod. 2002; 65: 1501
- 4f Crimmins MT, Pace JM, Nantermet PG, Kim-Meade AS, Thomas JB, Watterson SH, Wagman AS. J. Am. Chem. Soc. 1999; 121: 10249
- 4g van Beek TA, Lelyveld GP. J. Nat. Prod. 1997; 60: 735
- 5a Lu J, Xie L, Liu K, Zhang X, Wang X, Dai X, Liang Y, Cao Y, Li X. Phytother. Res. 2021; 35: 11
- 5b Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. J. Am. Chem. Soc. 2025; 142: 18599
- 5c Baker MA, Demoret RM, Ohtawa M, Shenvi RA. Nature 2019; 575: 643
- 5d Kuribara H, Weintraub ST, Yoshihama T, Maruyama Y. J. Nat. Prod. 2003; 66: 1333
- 5e Corey EJ, Su WG. J. Am. Chem. Soc. 1987; 109: 7534
- 5f Nakanishi K, Habaguchi K, Nakadaira YN, Woods MC. M, Major RT, Alauddin M, Weinges K, Bahr B. J. Am. Chem. Soc. 1971; 93: 3544
- 6a Wrobel J, Takahashi K, Honkan V, Lannoye G, Cook JM, Bertz SH. J. Org. Chem. 1983; 48: 139
- 6b Wender PA, Dreyer GB. J. Am. Chem. Soc. 1982; 104: 5805
- 6c Smith AB. III, Jerris PJ. J. Am. Chem. Soc. 1981; 103: 194
- 6d Zalkow LH, Harris RN, Van Derveer D. J. Chem. Soc., Chem. Commun. 1978; 420
- 7a Odaga M, Matoba T, Hosoya K, Nagasawa K. J. Am. Chem. Soc. 2021; 143: 2699
- 7b Hartrampf N, Winter N, Pupo G, Stoltz BM, Trauner D. J. Am. Chem. Soc. 2018; 140: 8675
- 8a Chen H, Li Z, Shao P, Yang H, Chen S.-C, Luo T. J. Am. Chem. Soc. 2022; 144: 15462
- 8b Xia D, Wang Z.-H, Jiang J.-M, Yang X.-W, Gao Y, Xu Y.-Y, Chang L.-Y, Zhu D, Zhao B.-J, Zhu X.-L, Zhang J, Yin Z.-Q, Pan K. Org. Lett. 2022; 24: 4684
- 8c Crossley SW. M, Tong G, Lambrecht MJ, Burdge HE, Shenvi AS. J. Am. Chem. Soc. 2020; 142: 11376
- 8d Iriondo-Alberdi J, Perea-Buceta JE, Greaney MF. Org. Lett. 2005; 7: 3969
- 9a Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
- 9b Liu T.-Y, Xie M, Chen YC. Chem. Soc. Rev. 2012; 41: 4101
- 9c Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 9d Gowrisankar S, Lee HS, Kim SH, Lee KY, Kim JN. Tetrahedron 2009; 65: 8769
- 9e Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
- 9f Singh V, Batra S. Tetrahedron 2008; 64: 4511
- 9g Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
- 9h Drewes SE, Roos GH. P. Tetrahedron 1988; 44: 4653
- 9i Basavaiah D, Satyanarayana T. Org. Lett 2001; 3: 3619
- 10a Basavaiah D, Devendhar B, Lenin DV, Satyanarayana T. Synlett 2009; 411
- 10b Basavaiah D, Reddy RJ, Lenin DV. Helv. Chim. Acta 2010; 93: 1180
- 10c Basavaiah D, Lenin DV, Veeraraghavaiah G. Curr. Sci. 2011; 101: 888
- 10d Vasantha R, Lenin DV, Rao LC, Kumar NS. Chem. Select 2020; 5: 14004
- 10e Lenin DV, Patel D, Malvi P. J. Heterocycl. Chem. 2022; 59: 588
- 10f Lenin DV, Malvi P. J. Heterocycl. Chem. 2023; 60: 957
- 10g Lenin DV, Malvi P. Tetrahedron 2023; 145: 133603
- 10h Mistry D, Macwan NB, Malvi P, Lenin DV. Asian J. Org. Chem. 2024; 13: e202400355
- 11 CCDC 2236868 and CCDC: 2235335 contain the supplementary crystallographic data for compounds 4a and 4l, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 12 Di-tert-butyl (2E,2′E)-2,2′-[(2,6-Dioxocyclohexane-1,1-diyl)di(methylene)]bis(3-phenylacrylate) (3a); Typical Procedure Oil-free NaH (10 mmol, 0.24 g) was added to a stirred solution of cyclohexane-1,3-dione (2a; 2mmol, 0.234 g) in anhyd toluene, and the mixture was refluxed for 1 h under N2. tert-Butyl 3-acetoxy-2-methylene-3-phenylpropanoate (5 mmol, 1.38g) was then added and the mixture was stirred and refluxed for 30 h until the reaction was complete (TLC). The reaction was then quenched 1% aq AcOH (50 mL), and the organic layer was extracted with Et2O (3 × 25 mL). The combined organic layer was washed with H2O (20 mL), dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 8% EtOAc–hexanes) to give a colorless solid; yield: 72%; mp 83–90 °C. IR (ATR): l max: 2976, 1693, 1722, 1156, 780 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.37 (s, 2 H), 7.20 (m, 6 H), 7.06–7.10 (m, 4 H), 2.77 (s, 4 H), 2.63 (t, J = 6.7 Hz, 4 H), 2.08 (m, 2 H), 1.39 (s, 18 H). 13C NMR (125 MHz, CDCl3): δ = 208.88, 167.81, 140.20, 135.78, 130.11, 129.11, 128.35, 127.87, 81.09, 66.23, 37.74, 31.35, 28.10, 17.62. HRMS (ESI): m/z [M + H]+ calcd C34H41O6: 545.2898; found: 545.2899. (4E,8E)-4,8-Dibenzylidene-2,10-dioxatricyclo[4.4.4.01,6]tetradecane-3,9,14-trione (4a); Typical Procedure TFA (5mmol, 0.57 g) was added to a stirred solution of 3a (1 mmol, 0.54 g) in DCE (5 mL) and the mixture was stirred at r.t. for 15 min. TFAA (2.5 mmol, 0.52 g) was then added and the mixture was refluxed for 3 h until the reaction was complete (TLC). The solvent was removed under reduced pressure and the residue was diluted with H2O (20 mL) and extracted with Et2O (3 × 25 mL). The combined organic layer was washed with sat. aq NaHCO3 (20 mL) and then dried (Na2SO4) and concentrated. The crude product was dissolved in Et2O (5 mL) precipitated by addition of pentane. The precipitate was collected by filtration and dried in a high vacuum to give an off-white solid; yield: 65%; mp 214–218 °C. IR (ATR): l max: 2934, 1728, 1274, 985, 833 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.97 (s, 2 H), 7.34–7.40 (m, 10 H), 3.38 (dd, J = 17.1, 2.2 Hz, 2 H), 2.66 (d, J = 2.3 Hz, 1 H), 2.58–2.64 (m, 3 H), 2.30 (dd, J = 7.2, 5.4 Hz, 2 H), 1.97–2.04 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 205.89, 163.36, 145.55, 134.13, 130.61, 130.25, 128.96, 119.54, 105.75, 49.71, 35.10, 32.74, 29.92, 18.43. HRMS (ESI): m/z [M + H]+ calcd for C26H23O5: 415.1540; found: 415.1535.