References and Notes
1
McManus HA.
Guiry PJ.
Chem. Rev.
2004,
104:
4151 ; and references cited therein
2a
Botteghi C.
Schionato A.
Chelucci G.
Brunner H.
Kürzinger A.
Obermann U.
J.
Organomet. Chem.
1989,
370:
17
2b
Menges F.
Neuburger M.
Pfaltz A.
Org.
Lett.
2002,
4:
4713
2c
Boland NA.
Casey M.
Hynes SJ.
Matthews JW.
Smyth MP.
J. Org. Chem.
2002,
67:
3919
2d
Busacca CA.
Grossbach D.
So RC.
O’Brien EM.
Spinelli EM.
Org. Lett.
2003,
5:
595
2e
Bastero A.
Claver C.
Ruiz A.
Castillón S.
Daura E.
Bo C.
Zangrando E.
Chem. Eur. J.
2004,
10:
3747
2f
Bhor S.
Anilkumar G.
Tse MK.
Klawonn M.
Döbler C.
Bitterlich B.
Grotevendt A.
Beller M.
Org. Lett.
2005,
7:
3393
2g
Weiss ME.
Fischer DF.
Xin Z.
Jautze S.
Schweizer WB.
Peters R.
Angew.
Chem. Int. Ed.
2006,
45:
5694;
Angew. Chem. 2006, 118: 5823
2h
Ma K.
You J.
Chem. Eur. J.
2007,
13:
1863
2i
Arai T.
Mizukami T.
Yanagisawa A.
Org.
Lett.
2007,
9:
1145
3
Molina P.
Tárraga A.
Curiel D.
Synlett
2002,
435
4
Helmchen G.
Krotz A.
Ganz K.-T.
Hansen D.
Synlett
1991,
257
5a
Le MauxP.
Abrunhosa I.
Berchel M.
Simonneaux G.
Gulea M.
Masson S.
Tetrahedron: Asymmetry
2004,
15:
2569
5b
Abrunhosa I.
Delain-Bioton L.
Gaumont A.-C.
Gulea M.
Masson S.
Tetrahedron
2004,
60:
9263
6a
Lu S.-F.
Du D.-M.
Zhang S.-W.
Xu J.
Tetrahedron: Asymmetry
2004,
15:
3433
6b
Du D.-M.
Lu S.-F.
Fang T.
Xu J.
J. Org. Chem.
2005,
70:
3712
7a
Nishio T.
Kodama Y.
Tsurumi Y.
Phosphorus, Sulfur Silicon
Relat. Elem.
2005,
180:
1449
7b
Yamakuchi M.
Matsunaga H.
Tokuda R.
Ishizuka T.
Nakajima M.
Kunieda T.
Tetrahedron Lett.
2005,
46:
4019
8
Casey M.
Smyth MP.
Synlett
2003,
102
9
Kazmaier U.
Bauer M.
J. Organomet. Chem.
2006,
691:
2155
10
Yamakuchi M.
Matsunaga H.
Tokuda R.
Ishizuka T.
Nakajima M.
Kunieda T.
Tetrahedron Lett.
2005,
46:
4019
11
Fu B.
Du D.-M.
Xia Q.
Synthesis
2004,
221
12
Nishio T.
J.
Org. Chem.
1997,
62:
1106
13
Abrunhosa I.
Gulea M.
Levillain J.
Masson S.
Tetrahedron: Asymmetry
2001,
12:
2851
14
Lafrague P.
Guenot P.
Lellouche J.-P.
Synlett
1995,
171
15a
Ugi I.
Meyr R.
Fetzer U.
Steinbrückner C.
Angew. Chem.
1959,
71:
386
15b
Ugi I.
Steinbrückner C.
Angew. Chem.
1960,
72:
267
16
Synthesis of Thioamide
1
Pivalaldehyde (7.82 mL, 72.0 mmol) and (S)-2-isocyano-3-methyl-1-butanol (5.46
g, 48.2 mmol) were added to a solution of Na2S2O3 (11.4
g, 72.0 mmol) and PPTS (18.1 g, 72.0 mmol) in H2O (40
mL) at 0 ˚C. The mixture was allowed to stir at
0 ˚C for further 30 min, before the ice bath was
removed and the solution warmed to r.t. Then, H2O was added,
and the product was extracted three times with CH2Cl2.
The combined organic layers were extracted with aq NaHCO3,
KHSO4, and H2O and dried over Na2SO4.
After evaporation of the solvent, the crude product was purified
by flash chromatography (silica gel, hexanes-EtOAc, 7:3) giving
rise to a colorless solid. The diastereomeric thioamides could be
separated by crystallization from benzene, providing (R,S)-1 (1.59 g, 6.9 mmol, 36%) as colorless
crystals; mp 129-130 ˚C. The S,S-isomer
was obtained (1.78 g, 7.7 mmol, 41%) by a second flash chromatography
(silica gel, hexanes-EtOAc, 8:2) as a colorless oil, which
solidified to a wax. R
f
= 0.47 [(S,S)-1] and 0.53 [(R,S)-1] (Et2O).
Compound
(R,S)-1: [α]D
²0 -57
(c 1.3, CHCl3). ¹H
NMR (500 MHz, DMSO-d
6): δ = 0.89,
0.92 (2 d, J = 6.8
Hz, 6 H), 0.94 (s, 9 H), 2.07 (m, 1 H), 3.49 (ddd, J = 9.9,
4.8, 4.6 Hz, 1 H), 3.58 (ddd, J = 9.9,
5.0, 4.8 Hz, 1 H), 4.03 (d, J = 6.0
Hz,
1 H), 4.35 (dddd, J = 9.0,
7.0, 4.8, 4.6 Hz, 1 H), 4.69 (dd, J = 5.0,
4.8 Hz, 1 H), 5.41 (d, J = 6.0
Hz, 1 H), 9.07 (d, J = 9.0
Hz, 1 H). ¹³C NMR (125 MHz, DMSO-d
6): δ = 18.8, 19.1,
26.6, 27.8, 34.8, 59.5, 60.9, 84.1, 202.5. HRMS (CI): m/z calcd for C11H24NO2S [M + H]+:
234.1528; found: 234.1530. Anal. Calcd for C11H23NO2S
(233.37): C, 56.61; H, 9.93; N, 6.00. Found: C, 56.60; H, 9.70;
N, 5.96.
Compound (S,S)-1: [α]D
²0 -92
(c 1.7, CHCl3). ¹H
NMR (500 MHz, DMSO-d
6): δ = 0.89,
0.91 (2 d, J = 6.9
Hz, 6 H), 0.95 (s, 9 H), 2.07 (m, 1 H), 3.50 (ddd, J = 11.0,
4.9, 4.7 Hz, 1 H), 3.60 (ddd, J = 11.0,
5.0, 4.8 Hz, 1 H), 4.05 (d, J = 5.9
Hz,
1 H), 4.34 (dddd, J = 8.8,
6.9, 4.8, 4.7 Hz, 1 H), 4.68 (dd, J = 5.0,
4.9 Hz, 1 H), 5.42 (d, J = 5.9
Hz, 1 H), 9.13 (d, J = 8.8
Hz, 1 H). ¹³C NMR (125 MHz, DMSO-d
6): δ = 19.0, 26.7,
28.0, 34.9, 59.3, 61.0, 84.2, 202.7. HRMS (CI): m/z calcd
for C11H24NO2S [M + H]+:
234.1528; found: 234.1547. Anal. Calcd for C11H23NO2S
(233.37): C, 56.61; H, 9.93; N, 6.00. Found: C, 56.61; H, 9.70;
N, 5.62.
17
Synthesis of the
Thiazoline Ligand (
S
,
S
)-2
Thioamide (S,S)-1 (8.40 g, 36.0 mmol) and Et3N
(11.1 mL, 79.2 mmol) were dissolved in abs. THF (180 mL). This solution
was cooled to 0 ˚C before MsCl (3.09 mL, 39.6 mmol)
in THF (35 mL) was added dropwise. After the addition was complete,
the ice bath was removed and the mixture allowed to warm to r.t.
The mixture was diluted with Et2O and washed with H2O.
After drying of the organic layer (Na2SO4)
and evaporation of the solvent a colorless solid (7.44 g, 34.4 mmol,
96% yield) was obtained. The crude product was crystallized
twice (hexane) giving colorless crystals (3.02 g, 14.0 mmol, 39% yield);
mp 88-90 ˚C. R
f
= 0.19
(hexane-Et2O, 8:2). [α]D
²0 -57
(c 1.4, CHCl3). ¹H NMR
(500 MHz, CDCl3): δ = 0.96
(d, J = 6.8
Hz, 3 H), 0.99 (s, 9 H), 1.03 (d, J = 6.8
Hz, 3 H), 1.97 (m, 1 H), 3.04 (dd, J = 10.5,
10.1 Hz, 1 H), 3.29 (dd, J = 10.5,
8.7 Hz, 1 H), 3.61 (br s, 1 H), 4.05 (d, J = 4.0
Hz, 1 H), 4.17 (dddd, J = 10.1, 8.7,
6.5, 1.1 Hz, 1 H). ¹³C NMR (125 MHz,
CDCl3): δ = 18.9,
19.6, 25.9, 32.8, 35.2, 35.8, 79.5, 81.6, 172.8. HPLC: column: LiChrosorb
Si 60, hexane-Et2O (90:10), flow: 2.0 mL/min; t
R = 11.80
min. HRMS (CI): m/z calcd for C11H22NOS [M + H]+:
216.1422. Found: 216.1447. Anal. Calcd for C11H21NOS
(215.35): C, 61.35; H, 9.83; N, 6.50. Found: C, 61.17; H, 9.50;
N, 6.36.
Synthesis of the Thiazoline
Ligand (
R
,
S
)-2
Ligand
(R,S)-2 was prepared according to the same procedure
from (R,S)-1 (466
mg, 2.00 mmol). The crude product was purified by flash chromatography
giving rise to colorless crystals (363 mg, 1.69 mmol, 85% yield);
mp 69 ˚C. R
f
= 0.38
(hexane-Et2O, 8:2). [α]D
²0 -71
(c 1.5, CHCl3). ¹H
NMR (500 MHz, CDCl3): δ = 0.97
(d, J = 6.8 Hz,
3 H), 1.005 (s, 9 H), 1.006 (d, J = 6.8
Hz, 3 H), 1.98 (m, 1 H, 5-H), 3.07 (dd, J = 10.9,
9.1 Hz, 1 H), 3.33 (dd, J = 10.9,
9.0 Hz, 1 H), 3.59 (d, J = 4.5
Hz, 1 H), 3.99 (m,
1 H), 4.23 (dddd, J = 9.1,
9.0, 6.4, 1.7 Hz, 1 H). ¹³C NMR (125
MHz, CDCl3): δ = 19.1,
19.4, 26.0, 32.6, 35.4, 35.7, 79.5, 81.5, 171.8. HPLC: column: LiChrosorb
Si 60, hexanes-Et2O (90:10), flow: 2.0 mL/min; t
R = 5.65
min. HRMS (CI): m/z calcd for
C11H22NOS [M + H]+:
216.1422; found: 216.1445. Anal. Calcd for C11H21NOS
(215.35): C, 61.35; H, 9.83; N, 6.50. Found: C, 60.93; H, 9.65;
N, 6.45.
18
General Procedure
for ZnEt
2 Additions towards Aldehydes
A
solution of ZnEt2 in hexane (15%, 2 mL, 1.76
mmol) was added to the ligand (S,S)-2 (4.3 mg,
0.02 mmol, 2 mol%) in toluene (2 mL) in a Schlenk tube
under argon. The mixture was stirred at r.t. for 30 min before the
aldehyde (1 mmol) in toluene (1 mL) was added. After 22 h, 1 N HCl
was added. After stirring for 10 min the product was extracted with
Et2O (twice) and the enantiomeric ratio of the crude
product was determined by GC using a chiral cyclodextrin column. Afterwards
the crude product was purified by flash chromatography
19a
Noyori R.
Kitamura M.
Angew.
Chem., Int. Ed. Engl.
1991,
30:
49 ; Angew. Chem. 1991, 103, 34
19b
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
19c
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757
19d
Yamakawa M.
Noyori R.
J. Am. Chem. Soc.
1995,
117:
6327
20a
Soai K.
Kawase Y.
J.
Chem. Soc., Perkin Trans. 1
1990,
3214
20b
Soai K.
Kawase Y.
Oshio A.
J.
Chem. Soc., Perkin Trans. 1
1991,
1613
21
Dosa PI.
Ruble JC.
Fu GC.
J.
Org. Chem.
1997,
62:
444
22a
Huang W.-S.
Pu L.
J.
Org. Chem.
1999,
64:
4222
22b
Huang W.-S.
Hu Q.-S.
Pu L.
J.
Org. Chem.
1999,
64:
7940
22c
Huang W.-S.
Pu L.
Tetrahedron Lett.
2000,
41:
145
22d
Qin Y.-C.
Pu L.
Angew. Chem. Int. Ed.
2006,
45:
273 ; Angew. Chem. 2006, 118, 279
23a
Ko D.-H.
Kim KH.
Ha D.-C.
Org. Lett.
2002,
4:
3759
23b
Fontes M.
Verdaguer X.
Solà L.
Pericàs
MA.
Riera A.
Org. Chem.
2004,
69:
2532
23c
Wu X.
Liu X.
Zhao G.
Tetrahedron:
Asymmetry
2005,
16:
2299
23d
Kim PG.
Walsh PJ.
Angew.
Chem. Int. Ed.
2006,
45:
4175;
Angew. Chem. 2006, 118, 4281
23e
Wang M.-C.
Zhang Q.-J.
Zhao W.-X.
Wang X.-D.
Ding X.
Jing
T.-T.
Song M.-P.
J.
Org. Chem.
2008,
73:
168
24a
Wu P.-Y.
Wu H.-L.
Uang B.-J.
J. Org. Chem.
2006,
71:
833
24b
Jin M.-J.
Sarkar SM.
Lee DH.
Qiu H.
Org. Lett.
2008,
10:
1235
25a
Bolm C.
Muñiz K.
Chem.
Commun.
1999,
1295
25b
Bolm C.
Hermanns N.
Hildebrand JP.
Muñiz K.
Angew. Chem. Int. Ed.
2000,
39:
3465 ; Angew. Chem. 2000, 112, 3607
25c
Bolm C.
Kesselgruber M.
Hermanns N.
Hildebrand JP.
Raabe G.
Angew.
Chem. Int. Ed.
2001,
40:
1488 ; Angew. Chem. 2001, 113, 1536
25d
Bolm C.
Zani L.
Rudolph J.
Schiffers I.
Synlett
2004,
2173
25e
Bolm C.
Schmidt F.
Zani L.
Tetrahedron:
Asymmetry
2005,
16:
1367
26a
Rudolph J.
Schmidt F.
Bolm C.
Adv. Synth. Catal.
2004,
346:
867
26b
Dahmen S.
Lormann M.
Org. Lett.
2005,
7:
4597
27a
Bolm C.
Rudolph J.
J.
Am. Chem. Soc.
2002,
124:
14850
27b
Rudolph J.
Schmidt F.
Bolm C.
Synthesis
2005,
840
27c
Schmidt F.
Rudolph J.
Bolm C.
Adv. Synth.
Catal.
2007,
349:
703
28
General Procedure
for Arylations of Aldehydes
The pinacol ester of phenylboronic
acid (306 mg, 1.5 mmol) was dissolved in toluene (4 mL) in a Schlenk
tube. A 1 M solution of ZnEt2 in hexane (1.5 mL, 1.5
mmol) was added, and the mixture was heated to 60 ˚C
for 12 h. After cooling to r.t., this solution was added to the
ligand (S,S)-2 (5.4 mg, 0.025 mmol, 5 mol%)
in another Schlenk tube. After stirring for 10 min at r.t., the
aldehyde was added in hexane (1 mL). The reaction was monitored
by TLC. After complete conversion, sat. NH4Cl solution
was added to quench the reaction and the aqueous layer was extracted
with CH2Cl2 (2 ×). The combined organic
layers were dried and evaporated. The product was purified by flash
chromatography, and the enantiomeric ratio was determined by HPLC
(Chiracel OD-H).
29 The ee was determined by HPLC using
the chiral column Chiracel OD-H.
30
Ishiyama T.
Takagi J.
Ishida K.
Miyaura N.
Anastasi NR.
Hartwig JF.
J. Am. Chem. Soc.
2002,
124:
390