References and Notes
1a
Dömling A.
Ugi I.
Angew.
Chem. Int. Ed.
2000,
39:
3168
1b
Dömling A.
Chem. Rev.
2006,
106:
17
2
Hulme C.
Morrissette MM.
Volz FA.
Burns CJ.
Tetrahedron
Lett.
1998,
39:
1113
3
Keating TA.
Armstrong RW.
J. Am. Chem. Soc.
1995,
117:
7842
4
Rikimaru K.
Yanagisawa A.
Kan T.
Fukuyama T.
Synlett
2004,
41
5a
Isaacson J.
Gilley CB.
Kobayashi Y.
J. Org. Chem.
2007,
72:
3913
5b
Vamos M.
Ozboya K.
Kobayashi Y.
Synlett
2007,
1595
6
Walborsky HM.
Niznik GE.
J. Org. Chem.
1972,
37:
187
7a
Blackburn C.
Guan B.
Tetrahedron
Lett.
2000,
41:
1495
7b
Veljkovic I.
Zimmer R.
Reissig H.-U.
Bruedgam I.
Hartl H.
Synthesis
2006,
2677
8
Baraldi PG.
Cacciari B.
Leoni A.
Recanatini M.
Roberti M.
Rossi M.
Manfredini S.
Periotto V.
Simoni D.
Farmaco
1991,
46:
1337
9
Baraldi PG.
Cacciari B.
Romagnoli R.
Spalluto G.
Arzneim.-Forsch.
1999,
49:
997
10a
Baraldi PG.
Leoni A.
Cacciari B.
Manfredini S.
Simoni D.
Bergomi M.
Menta E.
Spinelli S.
J.
Med. Chem.
1994,
37:
4329
10b
Baraldi PG.
Leoni A.
Cacciari B.
Manfredini S.
Simoni D.
Bioorg. Med. Chem. Lett.
1993,
3:
2511
11
Baraldi PG.
Casolari A.
Manfredini S.
Periotto V.
Zanirato V.
Florio C.
Traversa V.
Bertelli GM.
Borea PA.
Arzneim.-Forsch.
1988,
38:
1262
12
Pirrung MC.
Ghorai S.
J. Am. Chem. Soc.
2006,
128:
11771
13 Other reaction conditions that were
screened and proved inefficient for post-MCR cyclization of 3 included conventional heating in AcOH,
conventional and microwave heating in TFA, as well as using base
promoters (KOt-Bu, NaH) in various solvents
(e.g., THF, DMF, dioxane). tert-Butyl
isonitrile was chosen on the basis of its commercial availability
in large quantities. However, we are also finding it superior to
other isocyanides in the present post-MCR cyclization. These finding
will be disclosed in a separate communication.
14 Parallel evaporation of volatiles
from the microwave reactor tube was carried out using GeneVac® equipment.
15 No further purification and characterization
(except LC-MS analysis) of the crude Ugi reaction products 3 were performed.
16
Characterization
Data for Selected Compounds
Compound 2f:
white solid, mp 122-123 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.58 (s,
1 H), 7.50-7.55 (t, J = 8.1
Hz, 1 H), 7.27-7.31 (m, 2 H), 7.19-7.24
(m, 1 H), 7.08-7.13 (m, 3 H), 7.00 (ddd, J = 8.4,
2.5, 1.0 Hz, 1 H), 6.89 (d, J = 8.4 Hz,
2 H), 5.63 (d, J = 14.5
Hz, 1 H), 5.58 (s, 1 H), 3.87 (s, 3 H), 3.82 (s, 3 H), 3.45 (d, J = 14.5 Hz,
1 H), 2.38 (s, 3 H). ¹³C NMR (75Hz,
CDCl3): δ = 160.2, 159.7, 159.3, 158.1,
154.3, 138.0, 137.3, 132.1, 131.5, 131.1, 129.8, 129.5, 129.1, 126.6,
126.3, 125.7, 119.1, 116.4, 114.1, 111.1, 110.4, 60.6, 55.0, 54.9,
45.6, 19.2. LC-MS: m/z = 433 [M + H].
Anal. Calcd for C28H25N3O4:
C, 71.93; H, 5.39; N, 8.99. Found: C, 72.04; H, 5.43; N, 9.02.
Compound 2i: beige solid, mp 152-153 ˚C
(decomp.). ¹H NMR (300 MHz, CDCl3): δ = 7.25
(dd, J = 7.4,
5.3 Hz, 2 H), 7.07-7.12 (m, 4 H), 6.83-6.90 (m,
3 H), 5.57 (d, J = 14.5
Hz, 1 H), 5.17 (s, 1 H), 3.79 (s, 3 H), 3.48 (d, J = 14.5
Hz, 1 H), 2.03-2.12 (m, 1 H), 1.05-1.15 (m, 2
H), 0.90-0.96 (m, 2 H). ¹³C
NMR (75Hz, CDCl3): δ = 164.0, 162.9
(d, J
C-F = 248.5 Hz),
159.5, 159.3, 153.9, 137.2, 129.7, 129.5 (d, J
C-F = 2.9 Hz),
128.7 (d, J
C-F = 8.6
Hz), 126.1, 116.3 (d, J
C-F = 21.7), 114.1,
110.4, 63.3, 54.4, 45.5, 9.2, 9.1, 8.9. LC-MS: m/z = 406 [M + H].
Anal. Calcd for C23H20FN3O3:
C, 68.14; H, 4.97; N, 10.36. Found: C, 68.19; H, 5.03; N, 10.39.
Compound 2j: white solid, mp 147-149 ˚C
(decomp.). ¹H NMR (300 MHz, CDCl3): δ = 7.61
(d, J = 3.5
Hz, 1 H), 7.48 (s, 1 H), 7.46 (d, J = 5.0
Hz, 1 H), 7.25-7.37 (m, 5 H), 7.12-7.18 (m, 3
H), 7.02 (t, J = 8.4
Hz, 2 H), 5.76 (s, 1 H). ¹³C NMR (75Hz,
CDCl3): δ = 162.9 (d, J
C-F = 248.5
Hz), 159.6, 153.7, 153.4, 138.1, 137.5, 132.4, 130.2 (d, J
C-F = 2.8
Hz), 129.1, 128.7 (d, J
C-F = 8.6
Hz), 129.3, 128.0, 127.9, 127.6, 126.7, 116.1 (d, J
C-F = 22.1),
111.0, 68.7. LC-MS: m/z = 404 [M + H].
Anal. Calcd for C22H14FN3O2S:
C, 65.50; H, 3.50; N, 10.47. Found: C, 65.54; H, 3.60; N, 10.51.