Subscribe to RSS
DOI: 10.1055/s-0028-1087665
An Efficient Approach to Original Substituted 2-Arylidene-2H-[1,4]-oxazin-3(4H)-ones via a Tandem Intramolecular P(O→C) Migration/Horner-Wadsworth-Emmons Olefination Sequence
Publication History
Publication Date:
15 January 2009 (online)
Abstract
A useful tool for the synthesis of 2-arylidene-2H-[1,4]-oxazin-3(4H)-one derivatives is described. Starting from bisvinylphosphate intermediate, the key step is an intramolecular P(O→C) migration combined with a Horner-Wadsworth-Emmons olefination as a one-pot procedure.
Key words
vinylphosphate - Horner-Wadsworth-Emmons olefination - 1,3-phosphorus migration - oxazine - arylidene
-
1a
Lichtenthaler FW. Chem. Rev. 1961, 61: 607 -
1b
Ebran J.-P.Hansen AL.Gøgsig TM.Skrydstrup T. J. Am. Chem. Soc. 2007, 129: 6931 -
1c
Sasaki M.Fuwa H.Ebine M. Org. Lett. 2008, 10: 2275 -
1d
Dugovic B.Reissig H.-U. Synlett 2008, 769 -
2a
Gezginci H.Salman S.Okyar A.Baktir G. Farmaco 1997, 52: 255 -
2b
Croce PD.Ferraccioli R.La Rosa C. Heterocycles 1995, 40: 349 -
2c
Turk CF.Krapcho J.Michel IM.Weinryb I. J. Med. Chem. 1977, 20: 729 -
3a
Yu H.Wang Z.Zhang L.Zhang J.Huang Q. Bioorg. Med. Chem. Lett. 2007, 17: 2126 -
3b
Sun L.Tran N.Liang C.Hubbard S.Tang F.Lipson K.Schreck R.Zhou Y.Waltz K.McMahon G.Tang C. J. Med. Chem. 2000, 43: 2655 -
3c
Stopeck A.Sheldon M.Vahedian M.Cropp G.Gosalia R.Hannah A. Clin. Cancer Res. 2002, 8: 2798 -
3d
Andreani A.Burnelli S.Granaiola M.Leoni A.Locatelli A.Morigi R.Rambaldi M.Varoli L.Landi L.Prata C.Berridge MV.Grasso C.Fiebig H.-H.Kelter G.Burger AM.Kunkel MW. J. Med. Chem. 2008, 51: 4563 -
4a
Belaud C.Roussakis C.Letourneux Y.Alami N.Villiéras J. Synth. Commun. 1985, 15: 1233 -
4b
Kornet MJ. J. Pharm. Sci. 1979, 68: 350 -
4c
Ikuta H.Shirota S.Kobayashi Y.Yamagishi K.Yamada K.Yamatsu I.Katayama K. J. Med. Chem. 1987, 30: 1995 -
4d
Kim SY.Lee J. Bioorg. Med. Chem. 2004, 12: 2639 -
4e
Janecki T.Baszczyk E.Studzian K.Janecka A.Krajewska U.Różalski M. J. Med. Chem. 2005, 48: 3516 -
4f
Krawczyk H.Albrecht L.Wojciechowski J.Wolf WM.Krajewska U.Różalski M. Tetrahedron 2008, 64: 6307 -
5a
Mousset D.Gillaizeau I.Sabatié A.Bouyssou P.Coudert G. J. Org. Chem. 2006, 71: 5993 -
5b
Mousset D.Gillaizeau I.Hassan J.Lepifre F.Bouyssou P.Coudert G. Tetrahedron Lett. 2005, 46: 3703 -
5c
Claveau E.Gillaizeau I.Blu J.Bruel A.Coudert G. J. Org. Chem. 2007, 72: 4832 -
5d
Cottineau B.Gillaizeau I.Farard J.Auclair M.-L.Coudert G. Synlett 2007, 1925 -
5e
Chaignaud M.Gillaizeau I.Ouhamou N.Coudert G. Tetrahedron 2008, 64: 805 -
6a
Hammond GB.Calogeropoulou T.Wiemer DF. Tetrahedron Lett. 1986, 27: 4265 -
6b
Calogeropoulou T.Hammond GB.Wiemer DF. J. Org. Chem. 1987, 52: 4185 - 7
Du Y.Wiemer DF. J. Org. Chem. 2002, 67: 5709 ; and references cited therein - 8
Baker TJ.Wiemer DF. J. Org. Chem. 1998, 63: 2613 - α-Phosphonolactams analogous to 3 (Scheme 1) have been prepared previously, in a number of different ways, and used in olefination processes. For recent representative examples, see:
-
9a
Gois PMP.Afonso CAM. Eur. J. Org. Chem. 2003, 3798 -
9b
Gois PMP.Afonso CAM. Tetrahedron Lett. 2003, 44: 6571 -
9c
Bower JF.Svenda J.Williams AJ.Charmant JPH.Lawrence RM.Szeto P.Gallagher T. Org. Lett. 2004, 6: 4727 -
9d
Sudau A.Münch W.Bats J.-W.Nubbemeyer U. Eur. J. Org. Chem. 2002, 3315 -
12a
Yu JS.Wiemer DF. J. Org. Chem. 2007, 72: 6263 -
12b
Vögeli U.Von Philipsborn W.Nagarajan K.Nair MD. Helv. Chim. Acta 1978, 61: 607 -
12c
Cabiddu S.Floris C.Melis S.Sotgiu F.Cerioni G. J. Heterocycl. Chem. 1986, 23: 1815 - 14
Scott WJ.Stille JK. J. Am. Chem. Soc. 1986, 108: 3033 - 16 Minireview:
Soos TJ.Meijer L.Nelson PJ. Drug News Perspect. 2006, 19: 325 -
18a
Bach S.Knockaert M.Reinhardt J.Lozach O.Schmitt S.Baratte B. J. Biol. Chem. 2005, 280: 31208 -
18b
Bettayeb K.Tirado OM.Marionneau-Lambert S.Ferandin Y.Lozach O.Morris JC.Mateo-Lozano S.Drueckes P.Schächtele C.Kubbutat M.Liger F.Marquet B.Joseph B.Echalier A.Endicott J.Notario V.Meijer L. Cancer Res. 2007, 67: 8325 -
18c
Reinhardt J.Ferandin Y.Meijer L. Protein Expr. Purif. 2007, 54: 101
References and Notes
The 1,3-phosphorus migration reaction
was easily followed by TLC.
Synthesis
of 4-(
tert
-Butoxycarbonyl)-2-(diphenoxy-phosphoryl)-5-(diphenoxyphosphoryloxy)-3-oxo-2,3-dihydro-4
H
-[1,4]-oxazine (3)
A solution of KHMDS (13.94
mL, 0.5 M in toluene, 6.97 mmol) in THF (20 mL) was cooled to -78 ˚C
under argon. Subsequently, a solution of 1 (0.500
g, 2.32 mmol), distilled diphenyl chlorophosphate (1.373 g, 5.11
mmol), and distilled HMPA (1.041 g, 5.81 mmol) in THF (15 mL) was added
dropwise over 5 min. After 15 min at -78 ˚C, KHMDS
was added (4.65 mL, 2.32 mmol). After an additional hour at -78 ˚C,
the reaction mixture was diluted with Et2O (85 mL). Water
(125 mL) was then added, and the mixture was extracted with EtOAc.
The organic phase was washed with brine, dried over anhyd MgSO4,
and concentrated. Flash chromatography (PE-EtOAc, 7:3) afforded 3 (0.315 g, 20%) as a pale yellow
oil; R
f
= 0.56 (PE-EtOAc,
6:4). IR (NaCl): 3068, 2988, 2930, 1790, 1489, 1206 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.07-7.26
(m, 20 H), 6.65 (d, 4
J
HP = 2.8
Hz, 1 H), 4.92 (d, ²
J
HP = 16.0
Hz, 1 H), 1.42 (s, 9 H). ¹³C NMR (62.5
MHz, CDCl3): δ = 160.1 (s, J
C,P = 4.5
Hz), 150.5 (s, J
C,P = 7.5
Hz), 150.4 (s, J
C,P = 6.5 Hz),
150.3 (s, J
C,P = 7.6
Hz), 150.0 (s, J
C,P = 9.6
Hz), 146.3 (s), 132.5 (s, J
C,P = 8.9
Hz), 130.4 (d), 130.3 (d), 126.4 (d), 126.2(d), 122.9 (d, J
C,P = 5.1
Hz), 121.1 (d), 121.0(d), 120.4 (d, J
C,P = 2.1
Hz), 120.3 (d, J
C,P = 2.1
Hz), 87.0(s), 74.8 (d, J
C,P = 160.1
Hz), 28.0(q). MS (IS): m/z = 680.5 [M + H]+, 702.0 [M + Na]+.
As previously reported, the synthesis of bisvinylphosphate 2 from N-Boc morpholine-3,5-dione 1 was optimal by using KHMDS as a base (cf. ref. [5c] )
13
General Procedure
for the Wiemer Rearrangement Followed by the Horner-Wadsworth-Emmons
Reaction - Synthesis of (6
Z
)-4-(
tert
-Butoxycarbonyl)-6-(3,4,5-trimethoxybenzylidene)-5,6-dihydro-5-oxo-4
H
-[1,4]-oxazin-3-yl
Diphenyl Phosphate (4a)
A
solution of the bisvinylphosphate 2
[5c]
(0.500 g, 0.74 mmol) in THF (7.5
mL) was cooled to -78 ˚C under argon. Subsequently, n-BuLi (0.552 mL, 1.6 M in hexane, 0.88 mmol)
was added dropwise, and the reaction mixture was stirred for 10
min at -78 ˚C. A solution of 3,4,5-trimethoxy-benzaldehyde
(0.722 g, 3.68 mmol) in THF (2 mL), previously dried over
MS 4 Å, was then added dropwise. After 15 min at -78 ˚C
and 150 min at 0 ˚C, the reaction mixture was
diluted with Et2O (10 mL). Water (10 mL) was then added,
and the mixture was extracted with EtOAc. The organic phase was
washed with brine, dried over anhyd MgSO4, and concentrated.
Flash chromatog-raphy (PE-EtOAc, 8:2) afforded 4a (0.193 g, 42%) as a yellow
oil. IR (NaCl): 2926, 1693, 1446, 1240, 1043 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 7.20-7.41
(m, 20 H), 6.90 (s, 2 H), 6.71 (d, 4
J
HP = 3.3
Hz, 1 H), 6.66 (s, 1 H), 3.87 (s, 3 H), 3.85 (s, 6 H), 1.50 (s,
9 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 156.2(s), 152.6
(s), 150.1 (s, J
C,P = 7.4
Hz), 146.7 (s), 139.1 (s), 138.7 (s), 130.4 (s, J
C,P = 7.6
Hz), 130.1(d), 127.1(s), 126.1(d), 124.5 (d), 121.4 (d, J
C,P = 4.9
Hz), 120.0 (d, J
C,P = 4.9
Hz), 108.0(d), 86.2 (s), 60.9 (q), 56.1 (q), 27.6(q). MS (IS): m/z = 626.5 [M + H]+,
648.5 [M + Na]+.
General Procedure
for Stille-Type Coupling Reactions - Synthesis of (2
Z
)-4-(
tert
-Butoxycarbonyl)-2-(3,4,5-trimethoxybenzylidene)-5-{benzo[
b
][1,4]dioxin-2-yl}-2,3-dihydro-3-oxo-[1,4]-oxazine (5a)
To a stirred solution of
enol phosphate 4a (0.517 g, 0.83 mmol)
in THF (16 mL), {benzo[b][1,4]dioxin-2-yl}tributyl-stannane
(0.874 g, 2.07 mmol) and LiCl (0.105 g, 2.48 mmol) were added under
argon. Then, the flask was evacuated and backfilled with argon three
times. Under argon, Pd(PPh3)4 (0.096 g, 0.08
mmol) was added, and the mixture was heated at reflux during 150
min. After cooling, the reaction mixture was diluted with EtOAc.
The organic phase was washed with brine, dried over anhyd MgSO4,
and concentrated. Flash chromatography (PE-EtOAc, 9:1 then 8:2)
afforded 5a (0.247 g, 59%) as
a yellow solid; mp 151-152 ˚C. IR (NaCl):
2978, 2942, 2836, 1759, 1702, 1493, 1246 cm-¹. ¹H
NMR (250 MHz, CDCl3) δ = 6.95 (s, 1
H), 6.89 (s, 1 H), 6.83-6.87 (m, 2 H), 6.63-6.70
(m, 3 H), 6.20 (s, 1 H), 3.88 (s, 3 H), 3.87 (s, 6 H), 1.55 (s,
9 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 156.1(s),
153.1(s), 148.0(s), 141.7 (s), 141.6(s), 140.2 (s), 139.1(s), 130.0(s),
128.5 (s), 128.0(d), 125.2 (d), 124.6 (d), 124.5 (d), 116.4 (d),
115.6 (d), 113.3 (s), 107.8 (d), 85.8 (s), 61.0(q), 56.2(q), 27.8
(q). ESI-HRMS: m/z calcd for
C27H27NO9
²³Na [M +Na]+:
532.15835; found: 532.1582.
Compound 5b:
yellow solid; mp 140-141 ˚C. HRMS (EI): m/z calcd for C19H13NO4 [M - C4H8 - CO2]+
:
319.08446; found: 319.0838.
Compound 5c:
yellow oil. HRMS (EI): m/z calcd
for C17H11NO5 [M - C4H8 - CO2]+
:
309.06372; found: 309.0642.
Compound 5d:
yellow oil. HRMS (EI): m/z calcd
for C19H13NO2 [M - C4H8 - CO2]+
:
287.09463; found: 287.0969.
Compound 5e:
yellow oil. HRMS (EI): m/z calcd
for C16H17NO4 [M]+
:
287.11576; found: 287.1166.
Kinase activities assay were performed as reported in ref. [¹5] and [¹7] .