Synlett 2009(4): 675-680  
DOI: 10.1055/s-0028-1087810
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis and Evaluation of Chiral Dibenzazepinium Halide Phase-Transfer Catalysts

Barry Lygo*, Bryan Allbutt, Douglas J. Beaumont, Umar Butt, James A. R. Gilks
School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
e-Mail: B.Lygo@Nottingham.ac.uk;
Further Information

Publication History

Received 30 September 2008
Publication Date:
16 February 2009 (online)

Abstract

Two complimentary routes to chiral dibenzazepinium halides have been developed. This has enabled the synthesis and evaluation of a range of potential phase-transfer catalysts (PTC) for asymmetric alkylation and Michael addition reactions involving glycine imine esters.

    References and Notes

  • See, for example:
  • 1a Lygo B. Phase-Transfer Reactions, In Rodd’s Chemistry of Carbon Compounds   Vol. V:  Elsevier Science Ltd.; Oxford: 2001.  p.101-150  
  • 1b O’Donnell MJ. Asymmetric Phase-Transfer Reactions in Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Verlag Chemie; New York: 2000. 
  • 1c Shioiri T. Chiral Phase-Transfer Catalysts, In Handbook of Phase-Transfer Catalysis   Sasson Y. Neumann R. Blackie Academic and Professional; London: 1997. 
  • For reviews covering recent developments in asymmetric phase-transfer catalysis, see:
  • 2a Maruoka K. Org. Process Res. Dev.  2008,  12:  679 
  • 2b Hashimoto T. Maruoka K. Chem. Rev.  2007,  107:  5656 
  • 2c Ooi T. Maruoka K. Angew. Chem. Int. Ed.  2007,  46:  4222 
  • 2d Vachon J. Lacour J. Chimia  2006,  60:  266 
  • 2e O’Donnell MJ. Acc. Chem. Res.  2004,  37:  506 
  • 2f Lygo B. Andrews BI. Acc. Chem. Res.  2004,  37:  518 
  • 2g Maruoka K. Ooi T. Chem. Rev.  2003,  103:  3013 
  • Of particular interest are approaches that are compatible with in situ generation and screening, allowing for rapid optimization of PTC activity and reaction enantioselectivity, see for example:
  • 3a Kitamura K. Arimura Y. Shirakawa S. Maruoka K. Tetrahedron Lett.  2008,  49:  2026 
  • 3b Lygo B. Andrews BI. Hirst JD. Melville JL. Peterson JA. Slack D. Chim. Oggi  2004,  22:  8 
  • 3c Lygo B. Andrews BI. Crosby J. Peterson JA. Tetrahedron Lett.  2002,  43:  8015 
  • 4a Lygo B. Allbutt B. Kirton EHM. Tetrahedron Lett.  2005,  46:  4461 
  • 4b Melville JL. Lovelock KJR. Wilson C. Allbutt B. Burke EK. Lygo B. Hirst JD. J. Chem. Inf. Model.  2005,  45:  971 
  • 4c Lygo B. Allbutt B. Synlett  2004,  326 
  • 4d Lygo B. Allbutt B. James SR. Tetrahedron Lett.  2003,  44:  5629 
  • 5 Nakajima M. Miyoshi I. Kanayama K. Hashimoto S.-I. Noji M. Koga K. J. Org. Chem.  1999,  64:  2264 
  • 6 Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 9 For a review of glycine imine chemistry see: O’Donnell MJ. Aldrichimica Acta  2001,  34:  3 
  • For examples of application in target synthesis, see:
  • 10a Wang Y.-G. Ueda M. Wang X. Han Z. Maruoka K. Tetrahedron  2007,  63:  6042 
  • 10b Lee J.-H. Jeong B.-S. Ku J.-M. Jew S.-S. Park H.-G. J. Org. Chem.  2006,  71:  6690 
  • 10c Lygo B. Slack D. Wilson C. Tetrahedron Lett.  2005,  46:  6629 
  • 10d Fukuta Y. Ohshima T. Gnanadesikan V. Shibuguchi T. Nemoto T. Kisugi T. Okino T. Shibasaki M. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5433 
  • 10e Lygo B. Humphreys LD. Synlett  2004,  2809 
  • 10f Kim S. Lee J. Lee T. Park H.-G. Kim D. Org. Lett.  2003,  5:  2703 
  • 10g Armstrong A. Scutt JN. Org. Lett.  2003,  5:  2331 
  • 10h Lygo B. Andrews BI. Tetrahedron Lett.  2003,  44:  4499 
  • 10i Boeckman RK. Clark TJ. Shook BC. Org. Lett.  2002,  4:  2109 
  • 12 For a discussion relating to enantiomeric enrichment of scalemic amino acid derivatives by crystallisation, see: O’Donnell MJ. Delgado F. Tetrahedron  2001,  57:  6641 
  • See, for example:
  • 13a Lygo B. Kirton EHM. Lumley C. Org. Biomol. Chem.  2008,  6:  3085 
  • 13b Shibuguchi T. Mihara H. Kuramochi A. Sakuraba S. Ohshima T. Shibasaki M. Angew. Chem. Int. Ed.  2006,  45:  4635 
  • 13c van der Werf A. Kellogg RM. Tetrahedron Lett.  1991,  32:  3727 
  • See, for example:
  • 14a Shibuguchi T. Mihara H. Kuramochi A. Ohshima T. Shibasaki M. Chem. Asian J.  2007,  2:  794 
  • 14b Arai S. Takahashi F. Tsuji R. Nishida A. Heterocycles  2006,  67:  495 
  • 14c Akiyama T. Hara M. Fuchibe K. Sakamoto S. Yamaguchi K. Chem. Commun.  2003,  1734 
  • 14d O’Donnell MJ. Delgado F. Dominguez E. de Blas J. Scott WL. Tetrahedron: Asymmetry  2001,  12:  821 
  • 14e Corey EJ. Noe MC. Xu F. Tetrahedron Lett.  1998,  39:  5347 
7

Representative Procedures for Route APreparation of 6- tert -Butyl-2-bromo-3-methylphenol
N-Bromosuccinimide (77.6 g, 0.44 mol) was added in batches to a solution of 4 (68.2 g, 0.42 mol) in PE (1.5 L). The resulting mixture stirred for 3 h at r.t., then filtered through silica gel, and concentrated under reduced pressure. The residue was distilled (140-145 ˚C, 1.3˙10 bar) to afford the product (83.1 g, 83%) as a pale yellow oil. The residue could also be purified by chromatography on silica gel (R f = 0.5, PE) to give the product in similar yield.
IR (neat): νmax = 3497, 1602 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.09 (1 H, d, J = 8.0 Hz, ArH), 6.72 (1 H, d, J = 8.0 Hz, ArH), 5.90 (1 H, s, OH), 2.34 (3 H, s, CH3), 1.38 [9 H, s, C(CH3)3]. ¹³C NMR (100 MHz, CDCl3): δ = 150.4 (C), 136.0 (C), 134.7 (C), 125.5 (CH), 121.6 (CH), 115.4 (C), 35.1 (C), 29.5 (CH3), 23.1 (CH3). MS (EI): m/z calcd for C11H15O79Br: 242.0301; found: 242.0303 [M]+.
Preparation of 3,3′-Dibromo-5,5′-di- tert -butyl-2,2′-dimethyl-4,4′-dihydroxybiphenyl
Copper(I) chloride (2.40 g, 24.0 mmol) was added to a solution of TMEDA (3.84 mL, 25.0 mmol) in MeOH (600 mL). After stirring for 20 min, 6-tert-butyl-2-bromo-3-methylphenol (58.9 g, 240 mmol) was added, the mixture stirred under an air atmosphere for 3 d, then concentrated under reduced pressure. The residue was dissolved in Et2O and filtered through silica gel. The solution was again concentrated under reduced pressure and the residue purified by chromatography on silica gel to afford unreacted starting material (36%) followed by the product (33.5 g, 58%, R f = 0.4; PE-EtOAc, 9:1) as a colourless solid.
Mp 183-184 ˚C. IR (neat): νmax = 3494 cm. ¹H NMR (400 MHz, CDCl3): δ = 6.95 (2 H, s, ArH), 5.96 (2 H, s, OH), 2.09 (6 H, s, CH3), 1.40 [18 H, s, C(CH3)3]. ¹³C NMR (100 MHz, CDCl3): δ = 149.5 (C), 134.2 (C), 134.1 (C), 134.0 (C), 127.6 (CH), 116.0 (C), 35.2 (C), 29.6 (CH3), 20.9 (CH3). MS (EI): m/z calcd for C22H28O2 Br2: 482.0450; found: 482.0456 [M]+.
Preparation of 3,3′-Dibromo-5,5′-di- tert -butyl-4,4′-dimethoxy-2,2′-dimethylbiphenyl (5)
Methyl iodide (3.8 mL, 60.9 mmol) was added dropwise to a mixture of 3,3′-dibromo-5,5′-di-tert-butyl-2,2′-dimethyl-4,4′-dihydroxybiphenyl (11.8 g, 24.4 mmol) and anhyd K2CO3 (10.1 g, 73.1 mmol) in dry DMF (300 mL). The mixture was stirred at r.t. for 18 h, then H2O (350 mL) added, and the solution extracted with EtOAc (2 × 200 mL). The combined extracts were washed with brine (2 × 200 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (R f  = 0.3; PE-EtOAc, 49:1) to give the product (12.2 g, 98%) as a colourless solid.
Mp 105-107 ˚C. IR (neat): νmax = 3048, 2960, 2868, 2841 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.00 (2 H, s, ArH), 3.96 (6 H, s, OCH3), 2.10 (6 H, s, CH3), 1.39 [18 H, s, C(CH3)3]. ¹³C NMR (100 MHz, CDCl3): δ = 155.8 (C), 141.6 (C), 137.7 (C), 135.8 (C), 127.5 (CH), 122.0 (C), 61.5 (CH3), 35.3 (C), 31.1 (CH3), 21.0 (CH3). MS (EI): m/z calcd for C24H32O2 79BrBr: 512.0743; found: 512.0752[M]+.
Preparation of 5,5′-Di- tert -butyl-4,4′-dimethoxy-2,2′-dimethyl-3,3′-(3,5-bistrifluoromethylphenyl)biphenyl
3,5-Bistrifluoromethylphenylboronic acid (7.56 g, 29.3 mmol) was added to a solution of 5 (5.00 g, 9.76 mmol) in degassed THF (175 mL), then degassed 2 M aq K2CO3 (115 mL) and Pd(PPh3)4 (1.13 g, 0.98 mmol) were added. The mixture was heated at 70 ˚C for 24 h under a nitrogen atmosphere, then cooled to r.t., acidified with 2 M HCl, and extracted with Et2O (2 × 100 mL). The combined extracts were washed with brine (2 × 100 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was recystallised (Et2O-MeOH) to afford the product (4.71 g, 62%) as a colourless solid.
Mp 183-184 ˚C. IR (neat): νmax = 2963 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.89 (4 H, s, ArH), 7.86 (2 H, s, ArH), 7.18 (2 H, s, ArH), 3.16 (6 H, s, OCH3), 1.76 (6 H, s, CH3), 1.42 [18 H, s, C(CH3)3]. ¹³C NMR (125 MHz, CDCl3): δ = 156.4 (C), 141.1 (C), 140.6 (C), 137.6 (C), 133.3 (C), 133.1 (C), 131.5 (q, J = 33.5 Hz, C), 131.1 (CH), 129.2 (CH), 123.5 (q, J = 271.0 Hz, CF3), 120.8 (q, J = 7.7 Hz, CH), 60.7 (CH3), 35.1 (C), 31.1 (CH3), 18.2 (CH3). MS (EI): m/z calcd for C40H38F12O2: 778.2675; found: 778.2667 [M]+.
Preparation of 5,5′-Di- tert -butyl-4,4′-dimethoxy-2,2′-bisbromomethyl-3,3′-(3,5-bistrifluoromethylphenyl)-biphenyl (6b)
To a solution of 5,5′-di-tert-butyl-4,4′-dimethoxy-2,2′-dimethyl-3,3′-(3,5-bistrifluoromethylphenyl)biphenyl (1.85 g, 2.37 mmol) in CCl4 (30 mL) was added NBS (0.88 g, 4.97 mmol) and AIBN (5 mg). The mixture was placed under an argon atmosphere and heated at reflux for 20 min using a 60 W light bulb (1 cm from flask). The mixture was then cooled to r.t., filtered through silica gel, and concentrated under reduced pressure to give the product (2.11 g, 95%) as a colourless solid.
Mp 90-92 ˚C. IR (neat): νmax = 2964 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.15 (2 H, s, ArH), 7.98 (2 H, s, ArH), 7.96 (2 H, s, ArH), 7.40 (2 H, s, ArH), 3.95 (2 H, d, J = 10.0 Hz, CH a Hb), 3.89 (2 H, d, J = 10.0 Hz, CHa H b ), 3.22 (6 H, s, OCH3), 1.44 [18 H, s, C(CH3)3]. ¹³C NMR (100 MHz, CDCl3): δ = 157.4 (C), 143.9 (C), 138.9 (C), 135.8 (C), 134.1 (C), 132.8 (C), 131.7 (C, q, J = 33.5 Hz), 131.6 (C, q, J = 33.5 Hz), 131.1 (CH), 130.8 (CH), 130.3 (CH), 123.3 (C, q, J = 273.0 Hz), 123.3 (C, q, J = 273.0 Hz), 121.7 (CH, m), 60.9 (CH3), 35.4 (C), 30.8 (CH3), 30.3 (CH2). MS (EI):
m/z calcd for C40H36O2F12 Br2: 938.0845; found: 938.0815[M]+.
Preparation of ( R )-2,10-Di- tert -butyl-3,9-dimethoxy-6-methyl-6-(1-naphthalen-1-ylethyl)-4,8-bis(3,5-bistri-fluoromethylphenyl)-6,7-dihydro-5 H -dibenzo[ c , e ]-azepinium Bromide (1g)
Dibromide 6b (0.57 g, 0.61 mmol) was dissolved in MeCN (15 mL) and CH2Cl2 (3 mL), then (R)-α-methylnaphth-1-ylamine (0.13 g, 0.67 mmol) and anhyd K2CO3 (0.50 g 3.60 mmol) added. The mixture was stirred at 60 ˚C for 16 h then filtered, and concentrated under reduced pressure. The residue purified by recrystallisation (PhMe) to afford the product 1g (0.45 g, 70%) as a colourless solid.
Mp 102-104 ˚C. [α]D +78 (c 0.4, CHCl3). IR (neat): νmax = 2964 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.28 (1 H, s, ArH), 8.07 (2 H, s, ArH), 8.04 (1 H, s, ArH), 7.95 (1 H, d, J = 8.0 Hz, ArH), 7.91 (1 H, dd, J = 8.0, 1.0 Hz, ArH), 7.85 (1 H, s, ArH), 7.55 (1 H, s, ArH), 7.54 (1 H, s, ArH), 7.49 (1 H, dd, J = 7.5, 7.0 Hz, ArH), 7.39-7.28 (3 H, m, ArH), 7.07 (1 H, d, J = 8.5 Hz, ArH), 6.80 (1 H, s, ArH), 5.51 (1 H, d,
J = 15.0 Hz, NCH a Hb), 5.20 (1 H, q, J = 6.5 Hz, CHCH3), 4.19 (1 H, d, J = 15.0 Hz, NCHa H b ), 3.38 (1 H, d, J = 13.0 Hz, NCH a Hb), 3.19 (3 H, s, OCH3), 3.02 (3 H, s, OCH3), 2.98 (3 H, s, NCH3), 2.81 (1 H, d, J = 13.0 Hz, NCHa H b ), 1.60 [9 H, s, C(CH3)3], 1.46 [9 H, s, C(CH3)3], 1.09 (3 H, d, J = 6.5 Hz, NCHCH 3 ). ¹³C NMR (100 MHz, CDCl3): δ = 158.3 (C), 128.1 (C), 147.9 (C), 147.8 (C), 137.8-119.4 (complex CAr and CF3), 62.3 (CH), 61.2 (CH3), 61.0 (CH3), 59.7 (CH2), 57.9 (CH2), 43.2 (CH3), 36.0 (C), 35.8 (C), 30.9 (CH3), 30.8 (CH3), 15.9 (CH3). ¹9F NMR (282 MHz, CDCl3, referenced to CFCl3 = 0 ppm): δ = -62.1, -62.9, -63.2, -63.3. MS (ES+): m/z calcd for C53H50F12NO2: 960.3644; found: 960.3682 [M - Br]+.

8

Representative Procedures for Route BPreparation of 3,3′-Dibromo-5,5′-di- tert -butyl-4,4′-dimethoxy-2,2′-bisbromomethylbiphenyl
Bromination of 5 was performed as described for 6b, to give the product (100%) as a colourless solid.
Mp 206-207 ˚C. IR (neat): νmax = 3054, 2966, 2869 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.24 (2 H, s, ArH), 4.49 (2 H, d, J = 10.0 Hz, CHaHb), 4.19 (2 H, d, J = 10.0 Hz, CHaHb), 4.01 (6 H, s, OCH3), 1.42 [18 H, s, C(CH3)3]. ¹³C NMR (100 MHz, CDCl3): δ = 157.3 (C), 145.1 (C), 136.3 (C), 134.6 (C), 128.5 (CH), 122.4 (C), 61.8 (CH), 35.8 (C), 33.2 (CH2), 30.9 (CH3). MS (EI): m/z calcd for C24H30O2 79Br2 Br2: 669.8930; found: 669.8893[M]+.
Preparation of ( R )-4,8-Bisbromo-2,10-di- tert -butyl-3,9-dimethoxy-6-(1-phenylethyl)-6,7-dihydro-5 H -dibenzo-[ c , e ]azepine (7a)
To a stirred solution of 3,3′-dibromo-5,5′-di-tert-butyl-4,4′-dimethoxy-2,2′-bisbromomethylbiphenyl (221 mg, 0.33 mmol) in CHCl3 (10 mL) was added (R)-1-phenylethyl-amine (38.7 µL, 0.30 mmol) and anhyd K2CO3 (0.27 g, 1.98 mmol). The mixture was stirred at 60 ˚C for 18 h then filtered and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (R f = 0.6; Et2O-PE, 1:4) to yield the product (160 mg, 85%) as colourless crystals.
Mp 88-92 ˚C. [α]D ²² +14 (c 0.7, CHCl3). IR (neat): νmax = 2957 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.55 (1 H, s, ArH), 7.53 (1 H, s, ArH), 7.39-7.32 (4 H, m, ArH), 7.30-7.23 (1 H, m, ArH), 4.10-3.00 (5 H, m, 2 × CH2 and CH), 3.99 (6 H, s, OCH3), 1.47 [18 H, s, C(CH3)3], 0.90 (3 H, m, CH3). ¹³C NMR (100 MHz, CDCl3): δ = 156.4 (C), 146.1 (C), 144.0 (C), 137.6 (C) 135.0 (C), 128.2 (CH), 127.7 (CH), 126.8 (CH), 125.5 (CH), 122.0 (C), 61.7 (CH3), 52.4 (CH2), 35.5 (C), 31.0 (CH3), 23.3 (CH3). MS (ES+): m/z calcd for C32H40NO2 79Br2: 628.1420; found: 628.1456 [M + H]+.
Preparation of ( R )-2,10-di- tert -butyl-3,9-dimethoxy-6-(1-phenylethyl)-4,8-bis(3,5-bistrifluoromethylphenyl)-6,7-dihydro-5 H -dibenzo[ c , e ]azepine (8a)
Reaction of (R)-4,8-dibromo-2,10-di-tert-butyl-3,9-dimethoxy-6-(1-phenylethyl)-6,7-dihydro-5H-dibenzo-[c,e]azepine with 3,5-bistrifluoromethylphenylboronic acid was performed using the coupling procedure described above. The residue was purified by chromatography on silica gel (R f = 0.2; CH2Cl2-PE, 1:4) to give the product (63%) as colourless crystals.
Mp 101 ˚C; [α]D +1 (c 0.1, CHCl3). IR (neat): νmax = 2977 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.40-8.20 (2 H, m, ArH), 7.83 (2 H, s, ArH), 7.80-7.70 (1 H, m, ArH), 7.55 (2 H, s, ArH), 7.36 (1 H, s, ArH), 7.02-6.98 (3 H, m, ArH), 6.81-6.79 (2 H, m, ArH), 3.80-3.55 (2 H, m, CH2), 3.20-3.05 (3 H, m, CH and CH2), 3.09 (6 H, s, OCH3), 1.51 [18 H, s, C(CH3)3], 0.95-0.80 (3 H, m, CH3). ¹³C NMR (100 MHz, CDCl3): δ = 156.9 (C), 142.8 (C), 139.6 (C), 137.5 (C), 133.2-121.1 (complex C, CH, CF3), 61.1 (CH), 60.5 (CH3), 48.5 (CH2), 35.3 (C), 31.0 (CH3). MS (ES+): m/z calcd for C48H46NO2F12: 896.3331; found: 896.3455 [M + H]+.
Preparation of ( R )-2,10-Di- tert -butyl-3,9-dimethoxy-6-methyl-6-(1-phenylethyl)-4,8-bis(3,5-bistrifluoromethyl-phenyl)-6,7-dihydro-5 H -dibenzo[ c , e ]azepinium Iodide (2a)
Methyl iodide (200 µL, 3.2 mmol) was added to a solution of tertiary amine 8a (16 mg, 24 µmol) in CHCl3 (1.5 mL). The mixture stirred at 60 ˚C in a sealed tube for 2 h. After cooling to r.t., the solution was concentrated under reduced pressure. The residue was purified by chromatography on silica gel (R f  = 0.2; CHCl3-MeOH, 19:1) to give the product as a pale yellow solid (20.4 mg, 82%).
Mp 151-153 ˚C. [α]D +25 (c 0.2, CHCl3). IR (neat): νmax = 2924 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.29 (1 H, s, ArH), 7.97-7.94 (2 H, m, ArH), 7.90 (1 H, s, ArH), 7.82 (1 H, s, ArH), 7.61 (1 H, s, ArH), 7.57 (1 H, s, ArH), 7.42-7.22 (3 H, m, ArH), 7.13-7.11 (1 H, m, ArH), 6.97 (2 H, d, J = 7.5 Hz, ArH), 5.32 (1 H, d, J = 15.5 Hz, CH a Hb), 4.08 (1 H, d, J = 15.5 Hz, CHa H b ), 4.00-3.96 (1 H, m, CH), 3.38 (1 H, d, J = 11.5 Hz, CH a Hb), 3.16 (3 H, s, OCH3), 3.12 (3 H, s, OCH3), 2.93-2.85 (4 H, m, NCH3 and CHa H b ), 1.54 [9 H, s, C(CH3)3], 1.50 [9 H, s, C(CH3)3], 0.90 (3 H, m, CH3). ¹³C NMR (125 MHz, CDCl3): δ = 158.2 (C), 158.1 (C), 147.9 (C), 147.6 (C), 137.9 (C), 137.7 (C), 137.5 (C), 136.8 (C), 135.2 (C), 133.3 (C, q, J = 34.0 Hz), 132.6 (C, q, J = 33.5 Hz), 132.6 (C, q, J = 33.5 Hz), 131.9 (CH), 131.8 (CH), 131.7 (C, m, obscured), 131.6 (CH), 130.9 (C), 130.1 (CH), 129.6 (CH), 129.4 (CH), 129.3 (C), 129.2 (CH), 124.7 (C), 123.3 (C), 122.9 (C, q, J = 273.0 Hz), 122.7 (C, q, J = 273.0 Hz), 122.7 (C, q, J = 274.0 Hz), 122.5 (CH), 122.4 (C, q, J = 273.0 Hz), 121.8 (CH), 70.7 (CH), 61.3 (CH3), 61.1 (CH3), 59.6 (CH2), 59.3 (CH2), 43.1 (CH3), 35.8 (C), 35.7 (C), 30.7 (CH3), 30.7 (CH3), 15.3 (CH3). MA (ES+): m/z calcd for C49H48NO2F12: 910.3488; found: 910.3453[M - I]+.

11

General Procedure for the Alkylation of Glycine Imine 9 with Benzyl Bromide
A mixture of the catalyst (1 mol%) and imine 9 (50 mg, 0.17 mmol) in PhMe (2 mL) was degassed, placed under nitrogen, and cooled to 0 ˚C. Benzyl bromide (35 mg, 0.20 mmol) was added followed by 15 M aq KOH (1 mL) and the mixture stirred at 0 ˚C for 3 h. The mixture was then diluted with H2O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined extracts were dried (Na2SO4), concentrated under reduced pressure, and purified by chromatography on silica gel (R f = 0.5; PE-EtOAc-Et3N, 89:10:1) to give 10 as a colourless oil.
¹H NMR (400 MHz, CDCl3): δ = 7.59-7.56 (2 H, m, ArH), 7.38-7.26 (6 H, m, ArH), 7.20-7.14 (3 H, m, ArH), 7.06-7.03 (2 H, m, ArH), 6.61 (2 H, d, J = 6.5 Hz, ArH), 4.11 (1 H, dd, J = 9.0, 4.5 Hz, CH), 3.23 (1 H, dd, J = 13.5, 4.5 Hz, CH a Hb), 3.16 (1 H, dd, J = 13.5, 9.0 Hz, CHa H b ), 1.44 [9 H, s, C(CH3)3]. These ¹H NMR data are in agreement with those previously recorded.4d HPLC: Chiralcel OD-H (25 × 0.46 cm + guard) hexane-2-PrOH (100:1), 0.5 mL min; t R = 14.8 min (R)-isomer; t R = 28.2 min (S)-isomer.

15

General Procedure for the Michael Addition of Glycine Imine 11 to MVK
A mixture of imine 11 (0.12 mmol) and catalyst (1 mol%) in i-Pr2O (4 mL) was cooled to 0 ˚C. MVK (0.24 mmol) was added followed by anhyd Cs2CO3 (0.06 mmol) and the mixture stirred at 0 ˚C for 2 h. The mixture was then filtered and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (R f = 0.2; PE-EtOAc-Et3N, 89:10:1) to give 12 as a colourless oil.
IR (CHCl3): νmax = 1739, 1715, 1622 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.67-7.63 (2 H, m, ArH), 7.43-7.26 (16 H, m, ArH), 7.10-7.06 (2 H, m, ArH), 6.89 (1 H, s, CHPh2), 4.19 (1 H, app. t, J = 6.0 Hz, NCH), 2.58-2.50 (1 H, m), 2.44-2.36 (1 H, m), 2.23-2.18 (2 H, m), 2.05 (3 H, s, Me). ¹³C NMR (100 MHz, CDCl3): δ = 208.0 (C), 171.0 (C), 170.7 (C), 140.0 (2 × C), 139.3 (C), 136.1 (C), 130.5 (CH), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (2 × CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 127.4 (CH), 127.0 (CH), 77.2 (CH), 64.1 (CH), 39.5 (CH2), 29.9 (CH3), 27.5 (CH2). MS (CI): m/z calcd for C32H30NO3: 476.2226; found: 476.2241[M + H]+. HPLC: Chiralpak AD (25 × 0.46 cm + guard), hexane-2-PrOH (95:5), 1.0 mL min; t R = 23.7 min (R)-isomer; t R = 29.5 min (S)-isomer.