Subscribe to RSS
DOI: 10.1055/s-0029-1218563
Carbonyl Umpolung Reactivity of Enals: NHC-Catalyzed Synthesis of Aldol Products via Epoxide Ring Opening
Publication History
Publication Date:
11 December 2009 (online)

Abstract
A novel one-pot N-heterocyclic carbene catalyzed synthesis of aldol products and their application to a facile and highly cis-selective synthesis of tetrahydropyran-4-ones is reported. The protocol involves carbonyl umpolung reactivity of enals in which the carbonyl carbon attacks nucleophilically on electrophilic terminal epoxides, regioselectively, to afford aldol adducts in good to excellent yields.
Key words
N-heterocyclic carbenes - umpolung - epoxides - aldols - enals - tetrahydropyran-4-ones
-
1a
Maki BE.Chan A.Scheidt KA. Synthesis 2008, 1306 -
1b
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
1c
Marion N.Díez-González S.Nolan IP. Angew. Chem. Int. Ed. 2007, 46: 2988 -
1d
Zeitler K. Angew. Chem. Int. Ed. 2005, 44: 7506 -
2a
Seebach D. Angew. Chem., Int. Ed. Engl. 1979, 18: 239 -
2b
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534 - 3
Sohn SS.Rosen EL.Bode JW. J. Am. Chem. Soc. 2004, 126: 14370 - 4
Burstein C.Glorius F. Angew. Chem. Int. Ed. 2004, 43: 6205 -
5a
Chan A.Scheidt KA. Org. Lett. 2005, 7: 905 -
5b
He M.Bode JW. Org. Lett. 2005, 7: 3131 -
5c
He M.Struble JR.Bode JW. J. Am. Chem. Soc. 2006, 128: 8418 -
5d
Nair V.Vellalath S.Poonoth M.Suresh E. J. Am. Chem. Soc. 2006, 128: 8736 -
5e
Burstein C.Tschan S.Xie X.Glorius F. Synthesis 2006, 2418 -
5f
Chiang P.-C.Kaeobamrung J.Bode JW. J. Am. Chem. Soc. 2007, 129: 3520 -
5g
Chan A.Scheidt KA.
J. Am. Chem. Soc. 2008, 130: 2740 - 6
Stetter H.Hilboll G.Kuhlmann H. Chem. Ber. 1979, 112: 84 -
7a
Yadav LDS.Kapoor R. J. Org. Chem. 2004, 69: 8118 -
7b
Yadav LDS.Yadav S.Rai VK. Tetrahedron 2005, 61: 10013 -
7c
Yadav LDS.Rai VK. Tetrahedron Lett. 2006, 47: 395 -
7d
Yadav LDS.Rai VK. Synlett 2007, 1227 -
7e
Yadav LDS.Rai VK. Tetrahedron Lett. 2008, 49: 5553 -
7f
Yadav LDS.Yadav S.Rai A.Rai VK.Awasthi C. Tetrahedron 2008, 64: 1420 -
7g
Yadav LDS.Singh S.Rai VK. Green Chem. 2009, 11: 878 -
7h
Yadav LDS.Rai VK.Singh S. Synlett 2009, 1423 -
8a
Asakawa Y.Genjida F.Hayashi S.Matsuura T. Tetrahedron Lett. 1969, 38: 3235 -
8b
Tsuge O.Kanemasa S.Nakagawa N.Suga H. Bull. Chem. Soc. Jpn. 1987, 60: 4091 -
8c
Vertesy L.Aretz W.Ehlers E.Hawser S.Isert D.Knauf M.Kurz M.Schiell M.Vogel M.Wink J. J. Antibiot. 1998, 51: 921 -
8d
Kawagishi H.Fukumoto Y.Hatakeyama M.He P.Arimoto H.Matsuzawa T.Arimoto Y.Suganuma H.Inakuma T.Sugiyama K. J. Agric. Food Chem. 2001, 49: 2215 -
8e
Trost BM.Jonasson C.Wuchrer M. J. Am. Chem. Soc. 2001, 123: 12736 -
8f
Padrón JM.Miranda PO.Padrón JI.Martín VS. Bioorg. Med. Chem. Lett. 2006, 16: 2266 - 9
Yu C.-M.Kim Y.-M.Kim J.-M. Synlett 2003, 1518 -
10a
Nair V.Vellalath S.Babu BP. Chem. Soc. Rev. 2008, 37: 2691 -
10b
Sohn SS.Bode JW. Org. Lett. 2005, 7: 3873 -
12a
Boivin TLB. Tetrahedron 1987, 43: 3309 -
12b
Elliott MC.Willium E. J. Chem. Soc., Perkin Trans. 1 2001, 2303 -
12c
Marmsater FP.West FG. Chem. Eur. J. 2002, 8: 4347 -
13a
Adams DR.Bhatnagar DS. Synthesis 1977, 661 -
13b
Hassner A. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.541-577 -
13c
Hart DJ.Bennett EC. Org. Lett. 2003, 5: 1499 -
13d
Jasti R.Vitale J.Rychnovsky SD. J. Am. Chem. Soc. 2004, 126: 9904 -
14a
Boger DL.Weinreb SL. Hetero Diels-Alder Methodology in Organic Synthesis Academic Press; San Diego: 1987. -
14b
Dossetter AG.Jamison TF.Jacobsen EN. Angew. Chem. Int. Ed. 1999, 38: 2398 -
14c
Lu L.-Q.Xing X.-N.Wang X.-F.Ming Z.-H.Wang H.-M.Xiao W.-J. Tetrahedron Lett. 2008, 49: 1631 -
15a
Williams DR.Clark MP.Berliner MA. Tetrahedron Lett. 1999, 40: 2287 -
15b
Christmann M.Bhatt U.Quitschalle M.Claus E.Kalesse M. Angew Chem. Int. Ed. 2000, 39: 4364 -
15c
Clarke PA.Martin WHC. Org. Lett. 2002, 4: 4527 -
15d
Takahashi S.Kubota A.Nakata T. Tetrahedron 2003, 59: 1627 -
15e
Hilli F.White JM.Rizzacasa MA. Org. Lett. 2004, 6: 1289 -
15f
Clarke PA.Martin WHC.Hargreaves JM.Wilson C.Blake AJ. Chem. Commun. 2005, 1061 -
15g
Clarke PA.Martin WHC.Hargreaves JM.Wilson C.Blake AJ. Org. Biomol. Chem. 2005, 3: 3551 -
15h
Clarke PA.Santos S.Martin WHC. Green Chem. 2007, 9: 438
References and Notes
General Procedure
for the Synthesis of Aldol Products 4
A flame-dried
round-bottom flask was charged with benzimidazolium salt 3a (0.3 mmol). α,β-unsaturated aldehyde 1 (1.0 mmol), epoxide 2 (1.5
mmol), and THF-
t-BuOH
(10:1, 5 mL) under positive pressure of nitrogen followed by addition
of DBU (0.3 mmol) with a syringe. The resulting yellow-orange solution
was stirred for 15-18 h at r.t. (Table 2). After completion
of the reaction (monitored by TLC), the reaction mixture was concentrated
under reduced pressure. The residue was purified by flash column
chroma-tography on silica gel using hexane-EtOAc (10:1)
as eluent to afford analytically pure 4.
Characterization Data of Representative Compounds
4
Compound 4c: IR (KBr): νmax = 3439,
3021, 2929, 1676, 1627, 1608, 1585, 1453, 1347 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 3.09
(dd, 1 H, J = 17.3,
9.1 Hz, α′-Ha), 3.17 (dd, 1 H, J = 17.3,
3.5 Hz, α′-Hb), 3.69 (d, 1 H J = 2.9 Hz,
OH), 5.20 (ddd, 1 H, J = 9.1,
3.5, 2.9 Hz, β′-H), 6.73 (d, 1 H, J = 16.5 Hz, α-H),
7.53-7.41 (m, 5 Harom, Ph), 7.59 (d, 2 Harom, J = 8.7 Hz,
4-O2NC6H4), 7.65 (d, 1 H, J = 16.5 Hz, β-H),
8.27 (d, 2 Harom, J = 8.7
Hz, 4-O2NC6H4). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 48.6,
69.5, 122.3, 126.5, 127.8, 128.5, 129.1, 129.9, 134.2, 141.3, 144.1,
147.9, 199.7. MS (EI): m/z = 297 [M+].
Anal. Calcd for C17H15NO4: C,
68.68; H, 5.09; N, 4.71. Found: 68.96; H, 4.82; N, 4.50.
Compound 4f: IR (KBr): νmax = 3421,
3011, 2921, 1665, 1626, 1603, 1587, 1451 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = δ 3.01
(dd, 1 H, J = 17.1,
8.5 Hz, α′-Ha), 3.09 (dd, 1 H, J = 17.1,
3.7 Hz, α′-Hb), 3.78 (s, 3 H, OMe),
3.49 (d, 1 H, J = 2.8
Hz, OH), 5.19 (ddd, 1 H, J = 8.5,
3.7, 2.8 Hz, β′-H), 6.76 (d, 1 H, J = 16.1 Hz, α-H),
7.31-7.01 (m, 4 Harom, 3-MeOC6H4),
7.51-7.39 (m, 5 Harom, Ph), 7.59 (d, 1 H, J = 16.1 Hz, β-H). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 49.5, 56.3,
70.3, 111.9, 114.7, 119.5, 126.7, 127.5, 128.1, 129.4, 130.3, 136.9,
141.5, 144.3, 161.3, 200.4. MS (EI): m/z = 282 [M+].
Anal. Calcd for C18H18O3: C, 76.57;
H, 6.43. Found: C, 76.92; H, 6.33.
Compound 4i:
IR (KBr): νmax = 3441,
3027, 2920, 1679, 1618, 1606, 1584, 1458, 1349 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 3.09
(dd, 1 H, J = 17.5,
8.5 Hz, α′-Ha), 3.19 (dd, 1 H, J = 17.5,
3.8 Hz, α′-Hb), 3.49 (d, 1 H, J = 2.9 Hz,
OH), 3.83 (s, 3 H, OMe), 5.21 (ddd, 1 H, J = 8.5,
3.8, 2.9 Hz, β′-H), 6.69 (d, 1 H, J = 16.5 Hz, α-H),
6.93 (d, 2 Harom, J = 8.7 Hz,
4-MeOC6H4), 7.23 (d, 2 Harom, J = 8.7 Hz,
4-MeOC6H4), 7.62 (d, 2 Harom, J = 8.9 Hz,
4-O2NC6H4), 7.71 (d, 1 H, J = 16.5 Hz, β-H),
8.21 (d, 2 Harom, J = 8.9
Hz, 4-O2NC6H4). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 49.3,
60.1, 69.7, 115.2, 122.3, 126.9, 128.1, 129.3, 133.9, 142.3, 144.1, 148.4,159.8,
200.1. MS (EI): m/z = 327 [M+].
Anal. Calcd for C18H17NO5: C, 66.05;
H, 5.23; N, 4.28. Found: C, 65.69; H, 5.34; N, 4.51.
Compound 4o: IR (KBr): νmax = 3431,
3028, 2930, 1681, 1623, 1608, 1585, 1456, 1351 cm-1. ¹H
NMR (400 MHz, CDCl3): δ = 3.11
(dd, 1 H, J = 17.3,
9.2 Hz, α′-Ha), 3.17 (dd, 1 H, J = 17.3,
3.1 Hz, α′-Hb), 3.74 (d, 1 H, J = 3.0 Hz,
OH), 5.43 (ddd, 1 H, J = 9.2,
3.1, 3.0 Hz, β′-H), 6.78 (d, 1 H, J = 16.5 Hz, α-H),
7.63 (d, 1 H, J = 16.5
Hz, β-H), 8.29-7.71 (m, 8 Harom, 2 Ž 4-O2NC6H4). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 49.3,
69.5, 121.5, 122.3, 125.9, 127.9, 128.7, 142.4, 144.5, 146.2, 147.1,
147.9, 200.1. MS (EI): m/z = 342 [M+].
Anal. Calcd for C17H14N2O6:
C, 59.65; H, 4.12; N, 8.18. Found: C, 59.90; H, 4.24; N, 7.91.
General Procedure
for the Diastereoselective Synthsis of Tetrahydropyran-4-ones 5
A
mixture of aldol adduct 4 (0.2 mmol) and
BF3˙OEt2 (0.2 mmol) in CH2Cl2 (5
mL) was stirred at 0 ˚C for 30-40 min (Table
3). After completion of the reaction (monitored by TLC), the mixture
was diluted with EtOAc (30 mL), washed with sat. aq NaHSO3 solution
(2 × 30 mL) and then with brine (1 × 30
mL). The organic phase was separated and dried over anhyd MgSO4.
The solvent was removed under reduced pressure to give the crude
product 5, which was purified by flash
column chromatography on silica gel using hexane-EtOAc
(20:1) as eluent to afford an analytically pure sample of 5.
Characterization
Data of the Representative Compounds 5
Compound 5c: IR (KBr): νmax = 3051,
2950, 1718, 1605, 1585, 1456, 1346 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.93-2.51
(m, 4 H, 2 × CH2), 4.93 (dd,
1 H, J = 11.0,
4.1 Hz, H-2), 5.01 (dd, 1 H, J = 12.3,
2.6 Hz, H-6), 7.61 (d, 2 Harom, J = 8.8
Hz, 4-O2NC6H4), 7.67 (d, 2 Harom, J = 8.7 Hz, 4-ClC6H4),
7.88 (d, 2 Harom, J = 8.7
Hz, 4-ClC6H4), 8.29 (d, 2 Harom, J = 8.8 Hz,
4-O2NC6H4). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 49.3,
50.1, 78.1, 79.3, 122.9, 128.1, 129.5, 130.2, 134.7, 136.4, 145.9,
148.2, 205.2. MS (EI):
m/z = 331,
333 [M+, M+ + 2].
Anal. Calcd for C17H14ClNO4: C,
61.55.; H, 4.25; N, 4.22. Found: C, 61.19; H, 4.51; N, 4.01.
Compound 5f: IR (KBr): νmax = 3055,
2957, 1725, 1605, 1587, 1449, 1352 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.88-2.73
(m, 4 H, CH2), 5.03 (dd, 2 H, J = 12.1,
3.3 Hz, H-2, H-6), 8.31-7.51 (m, 8 Harom, 2 × 4-O2NC6H4). ¹³C NMR
(100 MHz, CDCl3-TMS): δ = 49.8,
50.3, 78.1, 79.5, 122.2, 123.8, 128.5, 129.2, 142.8, 143.9, 147.6,
148.5, 205.2. MS (EI): m/z = 342 [M+].
Anal. Calcd for C17H14N2O6:
C, 59.65; H, 4.12; N, 8.18. Found: C, 59.92; H, 3.89; N, 7.91.