Synthesis 2010(8): 1229-1279  
DOI: 10.1055/s-0029-1218699
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Cinchona Alkaloids in Asymmetric Organocatalysis

Tommaso Marcelli*a, Henk Hiemstra*b
a Dipartimento di Chimica, Materiali ed Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano , Via Mancinelli 7, 20131 Milano, Italy
Fax: +39(02)23993080; e-Mail: tommaso.marcelli@chem.polimi.it;
b Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
Fax: +31(20)5255604; e-Mail: h.hiemstra@uva.nl ;
Further Information

Publication History

Received 21 December 2009
Publication Date:
12 March 2010 (online)

Abstract

This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable stereoselectivity. This work presents an overview of the transformations developed in the period from 2001 through 2009, highlighting applications in the synthesis of bioactive molecules and natural products.

1 Introduction

2 Additions to Carbonyls

3 Additions to Imines

4 Conjugate Additions

5 Additions to Olefins

6 Nucleophilic Substitutions

7 Electrophilic Halogenations

8 Opening of Cyclic Anhydrides

9 Acylations

10 Cycloadditions

11 Rearrangements

12 Decarboxylations

13 Miscellaneous

14 Conclusions and Outlook

List of abbreviations: Alloc, allyloxycarbonyl; Boc, tert-butyloxy­carbonyl; Bs, benzenesulfonyl; BTTP, tert-butyliminotri(pyrrolidino)phosphorane; Cbz, benzyloxycarbonyl; DABCO, 1,4-diazabicyclo[2.2.2]octane; DBAD, dibenzyl azodicarboxylate; DBU, 1,8-diazabicycloundec-7-ene; DCE, 1,2-dichloroethane; DFT, density functional theory; DIPEA, N,N-diisopropylethyl­amine; DNP, 2,4-dinitrophenyl; DMB, 3,4-dimethoxybenzoyl; DPM, diphenylmethyl; DTAD, di-tert-butyl azodicarboxylate; EVE, ethyl vinyl ether; EWG, electron-withdrawing group; FBSM, 1-fluorobis(phenylsulfonyl)methane; HFiPA, 1,1,1,3,3,3-hexafluoro-2-propyl acrylate; LAH, lithium aluminum hydride; LG, leaving group; Moc, methyloxycarbonyl; MPEG, poly(ethylene glycol) monomethyl ether; MS, molecular sieves; MVK, methyl vinyl ketone; NFSI, N-fluorobenzenesulfonimide; NMR, nuclear magnetic resonance; Ns, p-nitrophenylsulfonyl; PEG, poly(ethylene glycol); PS, proton sponge [1,8-bis(dimethylamino)naphthalene]; rds, rate-determining step; TBAF, tetrabutylammonium fluoride; TCCA, trichloroisocyanuric acid; TFAA, trifluoroacetic anhydride; THF, tetrahydrofuran; TMAF, tetramethylammonium fluoride; TMS, trimethylsilyl; Ts, p-toluenesulfonyl; UNCA, urethane-protected α-amino acid N-carboxyanhydrides.

5

In simpler words: if both quinine and quinidine lacked the C3-vinyl groups, they would be enantiomers.

6

Prices from the Sigma-Aldrich website (November 2009, Italy): quinine, 50 g - ı 131.30; quinidine, 50 g - ı 288 40; cinchonidine, 100 g - ı 111.10; cinchonine, 100 g - ı 115.20