Subscribe to RSS
DOI: 10.1055/s-0030-1259946
Space Integration of Reactions: An Approach to Increase the Capability of Organic Synthesis
Publication History
Publication Date:
07 April 2011 (online)
Abstract
This article provides a brief outline of the concept of reaction integration in flow systems and some examples. The use of flow microreactors enables space integration of multiple reactions, especially those involving highly reactive short-lived reactive intermediates to enhance the power and speed of organic synthesis.
Key words
flow microreactor - step-by-step synthesis - space integration of reactions
- 1
Wender PA.Verma VA.Paxton TJ.Pillow TH. Acc. Chem. Res. 2008, 41: 40 - 3
Tietze LF. Chem. Rev. 1996, 96: 115 -
4a
Ryu I.Sonoda N. Chem. Rev. 1996, 96: 177 -
4b
Parsons PJ.Penkett CS.Shell AJ. Chem. Rev. 1996, 96: 195 -
4c
Louie J.Bielawski CW.Grubbs RH. J. Am. Chem. Soc. 2001, 123: 11312 - 5
Enders D.Hüttl MRM.Grondal C.Raabe G. Nature (London) 2006, 441: 861 -
6a
Babu G.Orita A.Otera J. Chem. Lett. 2008, 37: 1296 -
6b
Shimizu M.Shimono K.Hiyama T. Chem. Lett. 2006, 35: 838 -
6c
Fuwa H.Tako T.Ebine M.Sasaki M. Chem. Lett. 2008, 37: 904 -
6d
Ikeda S.Shibuya M.Kanoh N.Iwabuchi Y. Chem. Lett. 2008, 37: 962 -
6e
Cernak TA.Lambert TH. J. Am. Chem. Soc. 2009, 131: 3124 -
6f
Hardee DJ.Lambert TH. J. Am. Chem. Soc. 2009, 131: 7536 -
8a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
8b
Bienaymé H.Hulme C.Oddon O.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
8c
Balme G.Bossharth E.Monteiro N. Eur. J. Org. Chem. 2003, 4101 -
8d
Stacy W.Orga MG. J. Comb. Chem. 2007, 9: 14 - 9
Ugi I. Pure Appl. Chem. 2001, 73: 187 -
10a
Orita A.Yaruva J.Otera J. Angew. Chem. Int. Ed. 1999, 38: 2267 -
10b
Orita A.Yoshioka N.Struwe P.Braier A.Beckmann A.Otera J. Chem. Eur. J. 1999, 5: 1355 -
10c
Clarke PA.Santos S.Martin WHC. Green Chem. 2007, 9: 438 -
10d
Nokami T.Tsuyama H.Shibuya A.Nakatsutsumi T.Yoshida J. Chem. Lett. 2008, 37: 942 -
10e
Numata Y.Kawashima J.Hara T.Tajima Y. Chem. Lett. 2008, 37: 1018 -
10f
Yamaguchi K.Kotani M.Kamata K.Mizuno N. Chem. Lett. 2008, 37: 1258 - Multicatalytic processes:
-
11a
Ajamian A.Gleason JL. Angew. Chem. Int. Ed. 2004, 43: 3754 -
11b
Fogg DE.dos Santos EN. Coord. Chem. Rev. 2004, 248: 2365 -
11c
De Meijere A.von Zezschwitz P.Bräse S. Acc. Chem. Res. 2005, 38: 413 -
11d
Wasilke JC.Obrey SJ.Baker RT.Bazan GC. Chem. Rev. 2005, 105: 1001 -
11e
Schmidt B. Pure Appl. Chem. 2006, 78: 469 - Some recent reviews:
-
12a
Fletcher PDI.Haswell SJ.Pombo-Villar E.Warrington BH.Watts P.Wong SYF.Zhang X. Tetrahedron 2002, 58: 4735 -
12b
Jas G.Kirschning A. Chem. Eur. J. 2003, 9: 5708 -
12c
Jähnisch K.Hessel V.Löwe H.Baerns M. Angew. Chem. Int. Ed. 2004, 43: 406 -
12d
Kiwi-Minsker L.Renken A. Catal. Today 2005, 110: 2 -
12e
Doku GN.Verboom W.Reinhoudt DN.van den Berg A. Tetrahedron 2005, 61: 2733 -
12f
Watts P.Haswell SJ. Chem. Soc. Rev. 2005, 34: 235 -
12g
Yoshida J.Nagaki A.Iwasaki T.Suga S. Chem. Eng. Tech. 2005, 3: 259 -
12h
Geyer K.Codée JDC.Seeberger PH. Chem. Eur. J. 2006, 12: 8434 -
12i
Whitesides G. Nature (London) 2006, 442: 368 -
12j
deMello AJ. Nature (London) 2006, 442: 394 -
12k
Song H.Chen DL.Ismagilov RF. Angew. Chem. Int. Ed. 2006, 45: 7336 -
12l
Kobayashi J.Mori Y.Kobayashi S. Chem. Asian J. 2006, 1: 22 -
12m
Brivio M.Verboom W.Reinhoudt DN. Lab Chip 2006, 6: 329 -
12n
Kobayashi J.Mori Y.Kobayashi S. Chem. Asian J. 2006, 1: 22 -
12o
Mason BP.Price KE.Steinbacher JL.Bogdan AR.McQuade DT. Chem. Rev. 2007, 107: 2300 -
12p
Ahmed-Omer B.Brandtand JC.Wirth T. Org. Biomol. Chem. 2007, 5: 733 -
12q
Smith CD.Baxendale IR.Lanners S.Hayward JJ.Smith SC.Ley SV. Org. Biomol. Chem. 2007, 5: 1559 -
12r
Sahoo HR.Kralj JG.Jensen KF. Angew. Chem. Int. Ed. 2007, 46: 5704 -
12s
Fukuyama T.Rahman MT.Sato M.Ryu I. Synlett 2008, 151 -
12t
Yoshida J.Nagaki A.Yamada T. Chem. Eur. J. 2008, 14: 7450 -
12u
Shore G.Morin S.Mallik D.Organ MG. Chem. Eur. J. 2008, 14: 1351 -
12v
Lin W.-Y.Wang Y.Wang S.Tseng H.-R. Nano Today 2009, 4: 470 -
12w
McMullen JP.Jensen KF. Annu. Rev. Anal. Chem. 2010, 3: 19 -
12x
Yoshida J. Chem. Rec. 2010, 10: 332 -
12y
Yoshida J.Kim H.Nagaki A. ChemSusChem 2011, 4: 331 -
16a
Shono T.Hamaguchi H.Matsumura Y. J. Am. Chem. Soc. 1975, 97: 4264 -
16b
Shono T.Matsumura Y.Tsubata K. Org. Synth. 1985, 63: 206 - The oxidative methoxylation of amides has also been reported:
-
16c
Ross S.Finkelstein D.Peterson RC. J. Am. Chem. Soc. 1966, 88: 4657 -
16d
Nyberg K.Servin R. Acta Chem. Scand., Ser. B 1976, 30: 640 -
16e
Moeller KD. Tetrahedron 2000, 56: 9527 -
17a
Yoshida J.Suga S.Suzuki S.Kinomura N.Yamamoto A.Fujiwara K. J. Am. Chem. Soc. 1999, 121: 9546 -
17b
Suga S.Okajima M.Yoshida J. Tetrahedron Lett. 2001, 42: 2173 -
17c
Suga S.Suzuki S.Yoshida J.
J. Am. Chem. Soc. 2002, 124: 30 -
17d
Suga S.Watanabe M.Yoshida J. J. Am. Chem. Soc. 2002, 124: 14824 -
17e
Suga S.Nagaki A.Yoshida J. Chem. Commun. 2003, 354 -
17f
Suga S.Nagaki A.Tsutsui Y.Yoshida J. Org. Lett. 2003, 5: 945 -
17g
Suga S.Kageyama Y.Babu G.Itami K.Yoshida J. Org. Lett. 2004, 6: 2709 -
17h
Suga S.Suzuki S.Maruyama T.Yoshida J. Bull. Chem. Soc. Jpn. 2004, 77: 1545 -
17i
Nagaki A.Kawamura K.Suga S.Ando T.Sawamoto M.Yoshida J. J. Am. Chem. Soc. 2004, 126: 14702 -
17j
Suga S.Tsutsui Y.Nagaki A.Yoshida J. Bull. Chem. Soc. Jpn. 2005, 78: 1206 -
17k
Maruyama T.Suga S.Yoshida J. J. Am. Chem. Soc. 2005, 127: 7324 -
17l
Nagaki A.Togai M.Suga S.Aoki N.Mae K.Yoshida J. J. Am. Chem. Soc. 2005, 127: 11666 -
17m
Maruyama T.Suga S.Yoshida J. Tetrahedron 2006, 62: 6519 -
17n
Suga S.Watanabe M.Song C.-H.Yoshida J. Electrochemistry 2006, 74: 672 -
17o
Maruyama T.Mizuno Y.Shimizu I.Suga S.Yoshida J. J. Am. Chem. Soc. 2007, 129: 1902 -
17p
Suga S.Shimizu I.Ashikari Y.Mizuno Y.Maruyama T.Yoshida J. Chem. Lett. 2008, 37: 1008 -
17q
Okajima M.Soga K.Nokami T.Suga S.Yoshida J. Org. Lett. 2006, 8: 5005 -
17r
Nokami T.Ohata K.Inoue M.Tsuyama H.Shibuya A.Soga K.Okajima M.Suga S.Yoshida J.
J. Am. Chem. Soc. 2008, 130: 10864 -
17s
Nagaki A.Iwasaki T.Kawamura K.Yamada D.Suga S.Ando T.Sawamoto M.Yoshida J. Chem. Asian J. 2008, 3: 1558 -
17t
Okajima M.Soga K.Watanabe T.Terao K.Nokami T.Suga S.Yoshida J. Bull. Chem. Soc. Jpn. 2009, 82: 594 - 18
Suga S.Okajima M.Fujiwara K.Yoshida J. J. Am. Chem. Soc. 2001, 123: 7941 - 19
Suga S.Nishida T.Yamada D.Nagaki A.Yoshida J. J. Am. Chem. Soc. 2004, 126: 14338 - 20
Suga S.Yamada D.Yoshida J. Chem. Lett. 2010, 39: 404 - Some recent examples:
-
21a
Nagaki A.Tomida Y.Yoshida J. Macromolecules 2008, 41: 6322 -
21b
Nagaki A.Takabayashi N.Tomida Y.Yoshida J. Org. Lett. 2008, 10: 3937 -
21c
Nagaki A.Kim H.Yoshida J. Angew. Chem. Int. Ed. 2008, 47: 7833 -
21d
Nagaki A.Takizawa E.Yoshida J. Chem. Lett. 2009, 38: 486 -
21e
Nagaki A.Takabayashi N.Tomida Y.Yoshida J. Beilstein J. Org. Chem. 2009, 5: No. 16 -
21f
Nagaki A.Takizawa E.Yoshida J. J. Am. Chem. Soc. 2009, 131: 1654 -
21g
Tomida Y.Nagaki A.Yoshida J. Org. Lett. 2009, 11: 3614 -
21h
Nagaki A.Kim H.Yoshida J. Angew. Chem. Int. Ed. 2009, 48: 8063 -
21i
Nagaki A.Tomida Y.Miyazaki A.Yoshida J. Macromolecules 2009, 42: 4384 -
21j
Nagaki A.Takizawa E.Yoshida J. Chem. Lett. 2009, 38: 1060 -
21k
Nagaki A.Kim H.Matsuo C.Yoshida J. Org. Biomol. Chem. 2010, 8: 1212 -
21l
Nagaki A.Miyazaki A.Yoshida J. Macromolecules 2010, 43: 8424 -
21m
Nagaki A.Kim H.Moriwaki Y.Matsuo C.Yoshida J. Chem. Eur. J. 2010, 16: 11167 -
21n
Nagaki A.Miyazaki A.Tomida Y.Yoshida J. Chem. Eng. J. 2011, 167: 548 -
22a
Usutani H.Tomida Y.Nagaki A.Okamoto H.Nokami T.Yoshida J. J. Am. Chem. Soc. 2007, 129: 3047 -
22b
Nagaki A.Tomida Y.Usutani H.Kim H.Takabayashi N.Nokami T.Okamoto H.Yoshida J. Chem. Asian J. 2007, 2: 1513 - 23
Ushiogi Y.Hase T.Iinuma Y.Takata A.Yoshida J. Chem. Commun. 2007, 2947 - 24
Murahashi S.Yamamura M.Yanagisawa K.Mita N.Kondo K. J. Org. Chem. 1979, 44: 2408 - 25
Nagaki A.Kenmoku A.Moriwaki Y.Hayashi A.Yoshida J. Angew. Chem. Int. Ed. 2010, 49: 7543 -
26a
Baumann M.Baxendale IR.Ley SV. Synlett 2008, 2111 -
26b
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD.Tierney JP. Org. Biomol. Chem. 2008, 6: 1577 -
26c
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD. Org. Biomol. Chem. 2008, 6: 1587 -
26d
Palmieri A.Ley SV.Polyzos A.Ladlow M.Baxendale IR. Beilstein J. Org. Chem. 2009, 5: No. 23 -
26e
Sedelmeier J.Ley SV.Baxendale IR. Green Chem. 2009, 11: 683 -
26f
Baxendale IR.Ley SV.Mansfield AC.Smith CD. Angew. Chem. Int. Ed. 2009, 48: 4017 -
26g
Palmieri A.Ley SV.Hammond K.Polyzos A.Baxendale IR. Tetrahedron Lett. 2009, 50: 3287 -
26h
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611 -
26i
Hartman RL.Jensen KF. Lab Chip 2009, 9: 2495 -
26j
Webb D.Jamison TF. Chem. Sci. 2010, 1: 675 -
26k
Venturoni F.Nikbin N.Ley SV.Baxendale IR. Org. Biomol. Chem. 2010, 8: 1798 -
26l
Carter CF.Baxendale IR.Pavey JB.Ley SV. Org. Biomol. Chem. 2010, 8: 1588 -
26m
Baxendale IR.Schou SC.Sedelmeier J.Ley SV. Chem. Eur. J. 2010, 16: 89 -
26n
Carter FC.Baxendale IR.O’Brien M.Pavey JB.Ley SV. Org. Biomol. Chem. 2009, 7: 4594
References and Notes
A project of ‘Organic Synthesis based on Reaction Integration. Development of New Methods and Creation of New Substances’ supported by Grant-in-Aid for Scientific Research on Innovative Areas, The Ministry of Education, Culture, Sports, Science, and Technology, Japan, started in 2009.
7Multicomponent(coupling) reactions are reactions that convert more than two components directly into their products in a single reactor. Therefore, they can be also carried out in one-pot sequential way.
13Integrated chemical synthesizer was proposed by Bard in 1994. See: Bard, A. J. Integrated Chemical Systems; Wiley: New York, 1994.
14The name of domino reaction was derived
from the game where one puts up several domino pieces in one row
and in agreement with the time-resolved succession of reactions,
if
one knocks over the first domino, all the others follow without
changing the conditions. However, we should keep in mind that all
the molecules in a reaction vessel do not start the domino at once.
It is difficult to activate all reactant molecules coherently. The
molecules are activated indivi-dually and participate in the reaction
(and also domino sequence) at different times. Therefore, all the
reactions in the sequence take place simultaneously from a macroscopic point
of view. Therefore, reaction times (time required for converting
most of the reactant molecules) often range from minutes to hours,
although the time required for the reaction for a single molecule
is several hundred femtoseconds to picoseconds.
Life times of radical intermediates are usually much shorter than millisecond. Therefore, space integration of radical reactions is practically impossible at present, although there are many examples of time and space integration of radical reactions.