Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(9): 1339-1342
DOI: 10.1055/s-0031-1291043
DOI: 10.1055/s-0031-1291043
letter
Addition of Purines to N-Boc Imines Generated in Situ in Water: Efficient Synthesis of Novel Acyclic Purine Azanucleosides
Further Information
Publication History
Received: 19 January 2012
Accepted after revision: 26 March 2012
Publication Date:
14 May 2012 (online)
Abstract
A mild, efficient and highly regioselective addition of purine derivatives to N-Boc imines generated in situ in water was developed for the first time. A wide range of novel acyclic purine azanucleosides were synthesized in moderate to high yields through this transformation. This methodology was also appropriate for some other N-heterocycles.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1a Schaeffer HJ, Beauchamp L, De Miranda P, Elion GB, Bauer DJ, Collins P. Nature (London) 1978; 272: 583
- 1b Elion GB. J. Virol. Med. Supp. 1993; 1: 2
- 1c Elion GB, Furman PA, Fyfe JA, De Miranda P, Beauchamp L, Schaeffer H. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 5716
- 1d Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C. Chem. Rev. 1999; 99: 3525
- 1e De Clercq E. J. Clin. Virol. 2004; 30: 115
- 2 Parker WB. Chem. Rev. 2009; 109: 2880
- 3a Johnson AA, Ray AS, Hanes J, Suo Z, Colacino JM, Anderson KS, Johnson KA. J. Biol. Chem. 2001; 276: 40847
- 3b De Clercq E. J. Antimicrob. Chemother. 2003; 51: 1079
- 3c Jeha S, Gandhi V, Chan KW, McDonald L, Ramirez I, Madden R, Rytting M, Brandt M, Keating M, Plunkett W, Kantarjian H. Blood 2004; 103: 784
- 4a Nishitani T, Iwasaki T, Mushika Y, Miyoshi M. J. Org. Chem. 1979; 44: 2019
- 4b Kingsbury WD, Boehm JC, Mehta RJ, Grappel SF, Gilvarg C. J. Med. Chem. 1984; 27: 1447
- 4c Nichifor M, Schacht H. Tetrahedron 1994; 50: 3747
- 4d Lee JS, Jung YJ, Kim YJ. J. Pharm. Sci. 2001; 90: 1787
- 5a Koszytkowska-Stawińska M, Sas W. Tetrahedron Lett. 2004; 45: 5437
- 5b Koszytkowska-Stawińska M, Sas W, De Clercq E. Tetrahedron 2006; 62: 10325
- 5c Koszytkowska-Stawińska M, Kaleta K, Sas W. Nucleosides, Nucleotides Nucleic Acids 2007; 26: 51
- 5d Koszytkowska-Stawińska M, Kołaczkowska E, Adamkiewicz E, De Clercq E. Tetrahedron 2007; 63: 10587
- 5e Koszytkowska-Stawińska M. Nucleosides, Nucleotides Nucleic Acids 2010; 29: 768
- 5f Bergmeier SC, Fundy SL, Drach JC. Nucleosides, Nucleotides Nucleic Acids 1999; 18: 227
- 6a Gawin R, De Clercq E, Naesens L, Koszytkowska-Stawińska M. Bioorg. Med. Chem. 2008; 16: 8379
- 6b Koszytkowska-Stawińska M, De Clercq E, Balzarini J. Bioorg. Med. Chem. 2009; 17: 3756
- 6c Zhou D, Lagoja IM, Aerschot V, Herdewijn P. Collect. Czech. Chem. Commun. 2006; 71: 15
- 6d Guo HM, Wu YY, Niu HY, Wang DC, Qu GR. J. Org. Chem. 2010; 75: 3863
- 7 Zhong MH, Robins MJ. J. Org. Chem. 2006; 71: 8901
- 8a Petrini M. Chem. Rev. 2005; 105: 3949
- 8b Petrini M, Torregiani E. Synthesis 2007; 159
- 8c Yang JW, Pan SC, List B. Org. Synth. 2009; 86: 11
- 8d Alba AN. R, Companyo X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
- 8e Yin BL, Zhang YX, Xu LW. Synthesis 2010; 3583
- 9a Sohtome Y, Tanaka S, Takada K, Yamaguchi T, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 9254
- 9b Zhang HL, Syed S, Barbas CF. Org. Lett. 2010; 12: 708
- 9c Galzerano P, Agostino D, Bencivenni G, Sambri L, Bartoli G, Melchiorre P. Chem.–Eur. J. 2010; 16: 6069
- 9d Abermil N, Masson G, Zhu JP. Adv. Synth. Catal. 2010; 352: 656
- 9e Enders D, Goddertz DP, Beceno C, Raabe G. Adv. Synth. Catal. 2010; 352: 2863
- 9f Gonzalez PB, Lopez R, Palomo C. J. Org. Chem. 2010; 75: 3920
- 9g Zhang H, Chen MG, Lian CX, Yuan WC, Zhang XM. Synlett 2010; 1415
- 9h Zhao DP, Yang DX, Wang YJ, Wang Y, Wang LQ, Mao LJ, Wang R. Chem. Sci. 2011; 2: 1918
- 9i Mita T, Higuchi Y, Sato Y. Org. Lett. 2011; 13: 2354
- 9j Dou XY, Shuai Q, He LN, Li CJ. Inorg. Chim. Acta 2011; 369: 284
- 9k Jin Y, Song BA, Li XY, Bhadury PS, Wang ZC, Yang S. Chem. Cent. J. 2011; 5: 21
- 10 General Procedure for Addition of Purines 1 with α-Amido Sulfones 2: N-Boc α-amido sulfone (0.2 mmol, 1.0 equiv), Na2CO3 (0.3 mmol, 1.5 equiv), and H2O (2 mL) were put in a 10-mL glass vial equipped with a small magnetic stirring bar. To the solution was added purine derivative (0.24 mmol, 1.2 equiv). After stirring for the stipulated time at r.t., the mixture was diluted with H2O (5 mL) and extracted with EtOAc (3 × 25 mL, for 3aa–3ak, 3ca and 3cj) or CHCl3 (3 × 25 mL, for 3ba, 3da, 3ea, 3fa and 3ga). The organic layers were combined, dried over anhyd Na2SO4 and concentrated under reduced pressure. The residue was subjected to silica gel flash chromatography (EtOAc–hexanes, 1:5) to give the pure product
- 11 tert-Butyl Cyclohexyl (2,6-Dichloro-9H-purin-9-yl)methylcarbamate (3aa): yield: 97%; white solid; mp 182.7–183.3 °C. 1H NMR (300 MHz, CDCl3): δ = 8.15 (s, 1 H), 8.83 (br, 1 H), 5.63–5.69 (m, 1 H), 2.33 (br, 1 H), 1.65–2.02 (m, 4 H), 1.37 (s, 9 H), 0.83–1.36 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 154.5, 152.6, 152.4, 151.8, 145.7, 131.3, 81.3, 69.4, 40.1, 29.4, 29.1, 28.1, 25.7, 25.2, 25.1. HRMS (ESI): m/z [M + Na]+ calcd for C17H23Cl2N5NaO2: 422.1121; found: 422.1138
For selected examples of amino acid or peptide derivatives of pyrimidines, see:
For selected examples of aza-analogues of ganciclovir/penciclovir or acyclovir, see:
For selected examples of other acyclic azanucleosides, see:
For some recent examples, see: