Synlett 2012; 23(16): 2375-2380
DOI: 10.1055/s-0032-1317148
letter
© Georg Thieme Verlag Stuttgart · New York

Vanadium-Catalyzed Oxidation of tert-Butyl N-Hydroxycarbamate to tert-Butyl Nitrosoformate and Its Diels–Alder Reaction with Simple and Functionalized Dienes

Yujiro Hoshino*
Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, Fax: +81(45)3394434   Email: yhoshino@ynu.ac.jp
,
Kenzo Suzuki
Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, Fax: +81(45)3394434   Email: yhoshino@ynu.ac.jp
,
Kiyoshi Honda
Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, Fax: +81(45)3394434   Email: yhoshino@ynu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 June 2012

Accepted after revision: 26 July 2012

Publication Date:
13 September 2012 (online)


Abstract

A general and efficient vanadium-catalyzed oxidation of tert-butyl N-hydroxycarbamate to tert-butyl nitrosoformate using alkyl hydroperoxides as terminal oxidants has been developed. The intermediate nitroso compound was trapped by in situ Diels–Alder reaction with simple and functionalized dienes, providing general access to a variety of functionalized 3,6-dihydro-2H-1,2-oxazines.

Supporting Information

 
  • References and Notes

  • 3 Kirby GW, Sweeny JG. J. Chem. Soc., Perkin Trans. 1 1981; 3250
  • 4 Jenkins NE, Ware RW. Jr, Atkinson RN, King SB. Synth. Commun. 2000; 30: 947
  • 5 Martin SF, Hartmann M, Josey JA. Tetrahedron Lett. 1992; 33: 3583
  • 6 Dao LH, Dust JM, Mackay D, Watson KN. Can. J. Chem. 1979; 57: 1712
    • 7a Flower KR, Lightfoot AP, Wan H, Whiting A. Chem. Commun. 2001; 1812
    • 7b Iwasa S, Tajima K, Tsushima S, Nishiyama H. Tetrahedron Lett. 2001; 42: 5897
    • 7c Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
    • 7d Howard JA. K, Ilyashenko G, Sparkes HA, Whiting A, Wright AR. Adv. Synth. Catal. 2008; 350: 869
    • 7e Howard JA. K, Ilyashenko G, Sparkes HA, Whiting A. Dalton Trans. 2007; 2108
    • 7f Adamo MF. A, Bruschi S. J. Org. Chem. 2007; 72: 2666
    • 7g Chow CP, Shea KJ. J. Am. Chem. Soc. 2005; 127: 3678
    • 7h Pulacchini S, Sibbons KF, Shastri K, Motevalli M, Watkinson M, Wan H, Whiting A, Lightfoot AP. Dalton Trans. 2003; 2043
    • 7i Flower KR, Lightfoot AP, Wan H, Whiting A. J. Chem. Soc., Perkin Trans. 1 2002; 2058
    • 7j Iwasa S, Fakhruddin A, Tsukamoto Y, Kameyama M, Nishiyama H. Tetrahedron Lett. 2002; 43: 6159
  • 9 Recently, copper-catalyzed aerobic oxidation of N-hydroxy-carbamates to nitrosoformates and their nitroso ene reaction with functionalized olefins was reported, see: Frazier CP, Engelking JR, Read de Alaniz J. J. Am. Chem. Soc. 2011; 133: 10430
  • 10 Typical Procedure for the Vanadium-Catalyzed Oxidation of tert-Butyl N-Hydroxycarbamate and in situ Diels–Alder Reaction with (E,E)-Hexa-2,4-dien-1-ol (1a) To a solution of tert-butyl N-hydroxycarbamate (0.564 g, 4.1 mmol), (E,E)-hexa-2,4-dien-1-ol (0.246 mL, 2.1 mmol), and VO(Oi-Pr)3 (5.0 μL, 0.021 mmol) in CH2Cl2 (4.2 mL) was added 80% CHP (0.39 mL, 2.1 mmol) at ambient temper-ature. After stirring for 1 h, H2O (2 mL) was added to the mixture. A sat. Na2SO3 solution was slowly added to the resulting mixture. After stirring for 1 h, the reaction mixture was transferred to a separatory funnel, and the aqueous phase was extracted with CH2Cl2 (5 × 5 mL). The combined organic phases were washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. Flash chromatographic purification (eluent: hexane–Et2O = 3:1 to 2:1) of the residue provided 2a and 3a (0.480 g, 99%) as a mixture of two regioisomers. The mixture was separated by column chromatography on silica gel (hexane–EtOAc = 9:1) to give pure 2a and 3a. The structure was deduced from two-dimensional NMR spectroscopy (HMBC and HMQC).13 (3R*,6R*)-N-tert-Butoxycarbonyl-6-hydroxymethyl-3-methyl-3,6-dihydro-2H-1,2-oxazine (2a) 13 TLC: Rf  = 0.26 (hexane–EtOAc = 1:1). IR (neat): 3407, 2978, 1698, 1369, 1169, 1119, 1066 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.32 (d, J = 9.0 Hz, 3 H), 1.47–1.49 (m, 1 H), 1.50 (s, 9 H), 3.67 (dd, J = 6.6, 12.6 Hz, 1 H), 3.77 (dd, J = 3.0, 12.3 Hz, 1 H), 4.41–4.46 (m, 1 H), 4.64–4.68 (m, 1 H), 5.69 (dt, J = 10.2, 1.8 Hz, 1 H), 5.92 (ddd, J = 10.2, 4.5, 2.4 Hz, 1 H). (3S*,6S*)-N-tert-Butoxycarbonyl-3-hydroxymethyl-6-methyl-3,6-dihydro-2H-1,2-oxazine (3a) 13 TLC: Rf  = 0.38 (hexane–EtOAc = 1:1). IR (neat): 3445, 2979, 1704, 1369, 1166, 1113, 1088 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.26 (d, J = 6.6 Hz, 3 H), 1.50 (s, 9 H), 1.65 (s, 1 H), 3.72–3.77 (m, 2 H), 4.47–4.52 (m, 1 H), 4.65–4.68 (m, 1 H), 5.78 (ddd, J = 10.2, 4.2, 2.1 Hz, 1 H), 5.85 (td, J = 1.5, 10.2 Hz, 1 H).
  • 12 Zeng W, Ballard TE, Melander C. Tetrahedron Lett. 2006; 47: 5923
  • 13 Calvet G, Blanchard N, Kouklovsky C. Synthesis 2005; 3346
  • 14 N-tert-Butoxycarbonyl-2-oxa-3-azabicyclo[2.2.1]hept-5-ene (2b) 16 TLC: Rf  = 0.33 (hexane–Et2O = 1:2). IR (neat): 2978, 1739, 1702, 1165 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.47 (s, 9 H), 1.73 (d, J = 8.6 Hz, 1 H), 1.99 (td, J = 2.4, 8.6 Hz, 1 H), 4.98 (br s, 1 H), 5.21 (br s, 1 H), 6.40–6.42 (m, 2 H). N-tert-Butoxycarbonyl-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (2c) 16 TLC: Rf  = 0.51 (hexane–EtOAc = 3:1). IR (neat): 2976, 2936, 1736, 1695, 1158, 1073 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.27–1.54 (m, 2 H), 1.47 (s, 9 H), 2.06–2.23 (m, 2 H), 4.73–4.75 (m, 2 H), 6.50–6.59 (m, 2 H). (3S*,6R*)-N-tert-Butoxycarbonyl-3,6-diphenyl-3,6-dihydro-2H-1,2-oxazine (2d) TLC: Rf  = 0.39 (hexane–EtOAc = 5:1). IR (neat): 2978, 1700, 1392, 1368, 1166, 1094, 699 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.49 (s, 9 H), 5.56 (br s, 1 H), 5.59 (br s, 1 H), 6.09 (d, J = 10.5 Hz, 1 H), 6.16 (ddd, J = 10.8, 4.5, 2.1 Hz, 1 H), 7.26–7.53 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 28.4, 79.0, 81.7, 126.4, 127.7, 127.8, 128.2, 128.5, 128.7, 129.0, 137.2, 139.2, 154.2. N-tert-Butoxycarbonyl-1,8-dimethyl-15-oxa-16-azatetracyclo[6.6.2.02,7.09,14]hexadec-2,4,6,9,11,13-hexaene (2e) 4 Mp 106–109 °C. TLC: Rf  = 0.33 (hexane–EtOAc = 5:1). IR (KBr): 2981, 1707, 1460, 1288, 1159, 748 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.21 (s, 9 H), 2.23 (s, 3 H), 2.56 (s, 3 H), 7.23–7.27 (m, 4 H), 7.34–7.38 (m, 2 H), 7.43–7.46 (m, 2 H). A 1:1 Mixture of N-tert-Butoxycarbonyl-4-methyl-3,6-dihydro-2H-1,2-oxazine (2f) and N-tert-Butoxycarbonyl-5-methyl-3,6-dihydro-2H-1,2-oxazine (3f) 13 TLC: Rf  = 0.66 (hexane–EtOAc = 6:1). IR (neat): 2978, 2933, 1705, 1683, 1392, 1368, 1243, 1166, 1102 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.50 [s, 9 H, 3 × CH3 (3f)], 1.51 (s, 9 H, 3 × CH3), 1.67 [br s, 3 H, CH3-5 (3f)], 1.74 (br s, 3 H, CH3-4), 3.94 (br s, 2 H, H-3), 4.02–4.05 [m, 2 H, H-3 (3f)], 4.26 [br s, 2 H, H-6 (3f)], 4.35–4.38 (m, 2 H, H-6), 5.51–5.55 [m, 1 H + 1 H, overlapped with H-5 and H-4 (3f)]. A 1:1 Mixture of N-tert-Butoxycarbonyl-4-(4-methyl-pent-3-enyl)-3,6-dihydro-2H-1,2-oxazine (2g) and N-tert-Butoxycarbonyl-5-(4-methylpent-3-enyl)-3,6-dihydro-2H-1,2-oxazine (3g) TLC: Rf  = 0.64 (hexane–EtOAc = 6:1). IR (neat): 2976, 2929, 1727, 1703, 1366, 1162, 1092 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.50 (s, 9 H + 9 H), 1.60 (s, 3 H + 3 H), 1.69 (s, 3 H + 3 H), 1.98–2.12 (m, 4 H + 4 H), 3.97 (br s, 2 H), 4.05 (br s, 2 H), 4.29 (br s, 2 H), 4.39 (br s, 2 H), 5.05–5.12 (m, 1 H + 1 H), 5.52 (br s, 1 H + 1 H). 13C NMR (75 MHz, CDCl3): δ = 17.7, 25.6, 25.8, 25.9, 28.3, 32.7, 33.9, 44.9, 47.6, 68.0, 70.4, 81.4, 116.0, 117.6, 123.3, 132.3, 134.2, 135.5, 155.0. N-tert-Butoxycarbonyl-6-carboxy-3-methyl-3,6-dihydro-2H-1,2-oxazine (2h) TLC: Rf  = 0.68 (MeOH). IR (KBr): 2977, 1748, 1686, 1370, 1156, 1121 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.36 (d, J = 6.6 Hz, 3 H), 1.51 (s, 9 H), 4.43 (br s, 1 H), 5.16 (s, 1 H), 5.93–6.03 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 17.9, 28.3, 50.8, 75.9, 82.8, 121.9, 130.6 154.5, 170.5. N-tert-Butoxycarbonyl-6-ethoxycarbonyl-3-methyl-3,6-dihydro-2H-1,2-oxazine (2i) 17 TLC: Rf  = 0.63 (hexane–EtOAc = 6:1). IR (neat): 2980, 1760, 1738, 1705, 1369, 1312, 1196, 1169, 1076, 1032, 716 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.32 (t, J = 7.1 Hz, 3 H), 1.36 (d, J = 6.8 Hz, 3 H), 1.50 (s, 9 H), 4.27 (q, J = 7.2 Hz, 2 H), 4.46–4.48 (m, 1 H), 5.14–5.16 (m, 1 H), 5.90 (td, J = 1.3, 10.4 Hz, 1 H), 5.98 (ddd, J = 10.2, 4.3, 2.5 Hz, 1 H). N-tert-Butoxycarbonyl-6-methoxycarbonyl-3-hydroxy-methyl-3,6-dihydro-2H-1,2-oxazine (2j) TLC: Rf  = 0.24 (hexane–EtOAc = 1:1). IR (neat): 3446, 2979, 1737, 1707, 1475, 1251, 1157, 1071, 1024 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.50 (s, 9 H), 3.73–3.88 (m, 2 H), 3.82 (s, 3 H), 4.51–4.55 (m, 1 H), 5.52 (s, 1 H), 6.00 (ddd, J = 10.2, 3.9, 2.1 Hz, 1 H), 6.06 (td, J = 1.5, 10.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 28.2, 52.8, 56.6, 63.0, 74.3, 82.8, 124.3, 125.7, 155, 167.6. N-tert-Butoxycarbonyl-3-[(triisopropylsilyloxy)methyl]-6-methoxycarbonyl-3,6-dihydro-2H-1,2-oxazine (2k) TLC: Rf  = 0.77 (hexane–EtOAc = 1:1). IR (neat): 2943, 2867, 1766, 1740, 1710, 1367, 1109, 881, 681 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.02–1.13 (m, 3 H), 1.06 (d, J = 3.9 Hz, 18 H), 1.49 (s, 9 H), 3.80 (s, 3 H), 3.82 (dd, J = 9.6, 7.8 Hz, 1 H), 3.97 (dd, J = 9.3, 6.6 Hz, 1 H), 4.48–4.49 (m, 1 H), 5.16–5.19 (m, 1 H), 6.02 (td, J = 1.8, 10.2 Hz, 1 H), 6.16 (ddd, J = 10.2, 4.2, 2.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 11.9, 17.9, 28.3, 52.6, 55.8, 64.1, 74.7, 82.1, 123.2, 127.3, 154.1, 167.9. N-tert-Butoxycarbonyl-6-(N′-methoxy-N′-methyl-carbamoyl)-3-methyl-3,6-dihydro-2H-1,2-oxazine (2l) TLC: Rf  = 0.25 (hexane–Et2O = 1:2). IR (neat): 3592, 2979, 2934, 1681, 1369, 1172, 992, 714 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.37 (d, J = 6.6 Hz, 3 H), 1.51 (s, 9 H), 3.24 (br s, 3 H), 3.84 (s, 3 H), 4.45–4.47 (m, 1 H), 5.53 (br s, 1 H), 5.86 (br s, 1 H), 5.99 (ddd, J = 10.5, 5.1, 2.4 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 17.9, 28.4, 32.4, 50.7, 62.2, 74.3, 81.7, 122.3, 130.0, 154.2. N-tert-Butoxycarbonyl-3-[(tert-butyldimethylsilyloxy)-methyl]-6-methoxycarbonyl-3,6-dihydro-2H-1,2-oxazine (2m) TLC: Rf  = 0.66 (hexane–EtOAc = 1:1). IR (neat): 2954, 2930, 2857, 1766, 1741, 1710, 1253, 1106, 834, 777 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.07 (s, 6 H), 0.89 (s, 9 H), 1.49 (s, 9 H), 3.73 (dd, J = 9.9, 7.2 Hz, 1 H), 3.81 (s, 3 H), 3.88 (dd, J = 10.2, 7.2 Hz, 1 H), 4.46 (br s, 1 H), 5.16–5.19 (m, 1 H), 6.01 (td, J = 1.5, 10.2 Hz, 1 H), 6.11 (ddd, J = 10.5, 4.2, 2.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = –5.3, –5.3, 18.2, 25.6, 25.8, 28.3, 52.6, 55.8, 63.6, 74.7, 82.1, 123.5, 127.0, 154.2, 167.8.
  • 15 Adamo MF. A, Bruschi S. J. Org. Chem. 2007; 72: 2666
  • 16 Zhang D, Süling C, Miller MJ. J. Org. Chem. 1998; 63: 885
  • 17 Bollans L, Bacsa J, Iggo JA, Morris GA, Stachulski AV. Org. Biomol. Chem. 2009; 7: 4531