Synthesis 2013; 45(12): 1602-1611
DOI: 10.1055/s-0033-1338480
short review
© Georg Thieme Verlag Stuttgart · New York

TEMPO Derivatives as Alternative Mild Oxidants in Carbon–Carbon Coupling Reactions

Olga García Mancheño*
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany , Fax: +49(251)8333202   Email: olga.garcia@uni-muenster.de
,
Tobias Stopka
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany , Fax: +49(251)8333202   Email: olga.garcia@uni-muenster.de
› Author Affiliations
Further Information

Publication History

Received: 27 March 2013

Accepted after revision: 26 April 2013

Publication Date:
15 May 2013 (online)


Abstract

TEMPO-type oxidants are fundamentally associated with polymer chemistry, radical trapping processes, or the oxidation of alcohols to carbonyl compounds. However, in the past few years new exciting transformations using these kinds of oxidants in the area of C–C and C–heteroatom coupling have emerged. This review focuses on the application of TEMPO and its derivatives as mild reagents or catalysts in oxidative C–C coupling reactions. The review is divided into two main sections: i) the direct coupling of C–H bonds and ii) the use of organometallic reagents such as Grignard or boron species to generate the new C–C bond. In the last section, oxidative C–C/C–O tandem-coupling reactions, in which the TEMPO derivatives are incorporated in the final product, are also briefly described.

1 Introduction

2 Oxidative Couplings of C–X Bonds

2.1 C–C Bond Couplings of Grignard Reagents

2.2 C–C Bond Couplings of Boron Reagents

3 Oxidative Couplings of C–X with C–H Bonds

3.1 C–C Bond Couplings with Grignard Reagents

3.2 C–C Bond Couplings with Boron Reagents

3.3 Tandem C–C/C–O Coupling Reactions with Olefins

4 Oxidative Couplings of C–H Bonds

4.1 C(sp2)–H Bond Functionalizations

4.2 C(sp3)–H Bond Functionalizations

5 Conclusions

 
  • References

    • 1a Lebedev OL, Kazarnovskii SN. Tr. Khim. Khim. Tekhnol. 1959; 2: 649 ; Chem. Abstr. 1962, 56, 15479f
    • 1b Lebedev OL, Kazarnovskii SN. Zh. Obshch. Khim. 1960; 30: 1631 ; Chem. Abstr. 1961, 55, 1473

      Previous reviews on TEMPO chemistry:
    • 2a Sheldon RA, Arends IW. C. E, Brink G.-J, Dijksman A. Acc. Chem. Res. 2002; 35: 774
    • 2b Sheldon RA, Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051
    • 2c Vogler T, Studer A. Synthesis 2008; 1979
    • 2d Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034

      Reviews on N-oxoammonium chemistry:
    • 3a Bobbitt JM, Flores MC. L. Heterocycles 1988; 27: 509
    • 3b Bobbitt JM, Brückner C, Merbouh N. Oxoammonium- and nitroxide-catalyzed oxidations of alcohols . In Organic Reactions . Denmark SE. Wiley; New York: 2009. 74 103

    • See also:
    • 3c Mercadante MA, Kelly CB, Bobbitt JM, Tilley LJ, Leadbeater NE. Nat. Protoc. 2013; 8: 666

      For a recent review on oxidative C–C coupling reactions with organometallic reagents, see:
    • 4a Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761; and references cited therein

    • See also:
    • 4b Metal-Catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004

      For selected reviews on dehydrogenative coupling reactions, see:
    • 5a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 5b Scheuermann CJ. Chem. Asian J. 2009; 5: 436
    • 5c Klussmann M, Sureshkumar D. Synthesis 2011; 353
    • 5d Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 5e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215

    • For selected recent representative general reviews on C–H bond functionalizations, see:
    • 5f Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 5g Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
    • 5h Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 5i Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
    • 5j Willis MC. Chem. Rev. 2010; 110: 725
    • 5k Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 5l Ackermann L. Chem. Rev. 2011; 111: 1315; and references cited therein
  • 7 Maji MS, Pfeifer T, Studer A. Angew. Chem. Int. Ed. 2008; 47: 9547
  • 8 Maji MS, Studer A. Synthesis 2009; 2467
  • 9 Murarka S, Wertz S, Studer A. Chimia 2012; 66: 413
  • 10 Maji MS, Pfeifer T, Studer A. Chem. Eur. J. 2010; 16: 5872
  • 11 Maji MS, Murarka S, Studer A. Org. Lett. 2010; 12: 3878
  • 12 Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
  • 13 Vogler T, Studer A. Adv. Synth. Catal. 2008; 350: 1963
  • 14 Mitsudo K, Shiraga T, Tanaka H. Tetrahedron Lett. 2008; 49: 6593
  • 15 Mitsudo K, Shiraga T, Kagen D, Shi D, Becker JY, Tanaka H. Tetrahedron 2009; 65: 8384
  • 16 Murarka S, Studer A. Adv. Synth. Catal. 2011; 353: 2708
  • 17 Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
  • 18 He Z, Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2012; 51: 3699
  • 19 Mitsudo K, Shiraga T, Mizukawa J.-i, Suga S, Tanaka H. Chem. Commun. 2010; 46: 9256
  • 20 Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
  • 21 Yamaguchi K, Yamaguchi J, Studer A, Itami K. Chem. Sci. 2012; 3: 2156
  • 23 Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2010; 49: 6877

    • For reductive 5-exo-trig aryl radical-alkene cyclization/ trapping sequence, see for example:
    • 24a Boger DL, McKie JA. J. Org. Chem. 1995; 60: 1271
    • 24b Boger DL, Garbaccio RM, Jin Q. J. Org. Chem. 1997; 62: 8875
    • 24c Boger DL, Boyce CW. J. Org. Chem. 2000; 65: 4088

      For SET oxidation/radical 5-exo-trig cyclization/radical trapping, see:
    • 25a Jahn U, Müller M, Aussieker S. J. Am. Chem. Soc. 2000; 122: 5212
    • 25b Jahn U, Hartmann P, Dix I, Jones PG. Eur. J. Org. Chem. 2001; 3333

      For aryl radicals from diazo compounds, see:
    • 26a Heinrich MR, Wetzel A, Kirschstein M. Org. Lett. 2007; 9: 3833
    • 26b Hartmann M, Li Y, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
  • 27 For TEMPO-promoted radical cyclizations in natural product synthesis, see: Xu J, Caro-Diaz EJ. E, Trzoss L, Theodorakis EA. J. Am. Chem. Soc. 2012; 134: 5072; and references cited therein
  • 28 For trifluoromethyl-aminoxylation reactions, see: Li Y, Studer A. Angew. Chem. Int. Ed. 2012; 51: 8221
  • 29 Bobbitt JM, Ma Z. Heterocycles 1992; 33: 641
  • 30 Kashiwagi Y, Ono H, Osa T. Chem. Lett. 1993; 81
  • 31 Qin W.-B, Chang Q, Bao Y.-H, Wang N, Chen Z.-W, Liu L.-X. Org. Biomol. Chem. 2012; 10: 8814
  • 32 Richter H, García Mancheño O. Eur. J. Org. Chem. 2010; 4460
  • 33 Schämann M, Schäfer HJ. Synlett 2004; 1601
  • 34 Richter H, Rohlmann R, García Mancheño O. Chem. Eur. J. 2011; 17: 11622
    • 35a Song C.-X, Cai G.-X, Farrell TR, Jiang Z.-P, Li H, Gan L.-B, Shi Z.-J. Chem. Commun. 2009; 6002
    • 35b Liu H, Cao L, Fossey JS, Deng W.-P. Chem. Commun. 2012; 48: 2674
    • 36a Richter H, García Mancheño O. Org. Lett. 2011; 13: 6066
    • 36b Rohlmann, R.; Stopka, T.; Richter, H.; García Mancheño, O. J. Org. Chem. 2013, accepted.
    • 37a Richter H, Fröhlich R, Daniluic C.-G, García Mancheño O. Angew. Chem. Int. Ed. 2012; 51: 8656
    • 37b Rohlmann R, García Mancheño O. Synlett 2013; 24: 6
  • 38 Zhang B, Cui Y, Jiao N. Chem. Commun. 2012; 48: 4498