RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(16): 2271-2274
DOI: 10.1055/s-0034-1378362
DOI: 10.1055/s-0034-1378362
cluster
1,4-Diazabicyclo[2.2.2]octane-Mediated Ring Opening of 1-Acetylcyclopropanecarboxamides and Its Application to the Construction of 3-Alkylated γ-Lactams
Weitere Informationen
Publikationsverlauf
Received: 10. Mai 2014
Accepted after revision: 09. Juni 2014
Publikationsdatum:
28. Juli 2014 (online)

Abstract
1,4-Diazabicyclo[2.2.2]octane (DABCO)-mediated ring opening of 1-acetylcyclopropanecarboxamides efficiently gave stable zwitterions that could be formed in situ or readily isolated. An application of this novel type of ring opening was demonstrated in a one-pot efficient construction of biologically interesting 3-alkyl γ-lactams. The Lewis-base protocol provides an opportunity for performing ring opening, cycloaddition, and rearrangement reactions of donor–acceptor cyclopropanes through organocatalysis.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 1b Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 1c Shi M, Lu J.-M, Wei Y, Shao L.-X. Acc. Chem. Res. 2012; 45: 641
- 1d Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 1e De Simone F, Waser J. Synthesis 2009; 3353
- 1f Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 1g Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
- 1h Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 1i Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
- 1j Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 2a Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
- 2b de Nanteuil F, Serrano E, Perrotta D, Waser J. J. Am. Chem. Soc. 2014; 136: 6239
- 2c Novikov RA, Balakirev DO, Timofeev VP, Tomilov YV. Organometallics 2012; 31: 8627
- 2d Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 2e Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
- 2f Rivero AR, Fernández I, Sierra MÁ. Org. Lett. 2013; 15: 4928
- 2g Xiong H, Xu H, Liao S, Xie Z, Tang Y. J. Am. Chem. Soc. 2013; 135: 7851
- 3a Danishefsky S, Singh RK. J. Am. Chem. Soc. 1975; 97: 3239
- 3b Budynina EM, Ivanova OA, Averina EB, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2006; 47: 647
- 3c In their research, Wang and co-workers proposed nucleophilic addition of DABCO as a mechanism for cyclopropane ring opening, see: Du D, Wang Z. Tetrahedron Lett. 2008; 49: 956
- 4a Li M, Lin S, Dong Z, Zhang X, Liang F, Zhang J. Org. Lett. 2013; 15: 3978
- 4b Lin S, Wei Y, Liang F, Zhao B, Liu Y, Liu P. Org. Biomol. Chem. 2012; 10: 4571
- 4c Liang F, Lin S, Wei Y. J. Am. Chem. Soc. 2011; 133: 1781
- 4d Liang F, Cheng X, Liu J, Liu Q. Chem. Commun. 2009; 3636
- 4e Wei Y, Lin S, Xue H, Liang F, Zhao B. Org. Lett. 2012; 14: 712
- 4f Wei Y, Lin S, Zhang J, Niu Z, Fu Q, Liang F. Chem. Commun. 2011; 47: 12394
- 4g Wei E, Liu B, Lin S, Zhao B, Liang F. Org. Biomol. Chem. 2013; 11: 7212
- 5a MacMillan DW. C. Nature 2008; 455: 304
- 5b Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 1360
- 5c Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 5d Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
- 5e Cheong PH.-Y, Legault CY, Um JM, Çelebi-Ölçüm N, Houk KN. Chem. Rev. 2011; 111: 5042
- 5f Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
- 5g Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 6a Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
- 6b Nair V, Menon RS, Sreekanth AR, Abhilash N, Biju AT. Acc. Chem. Res. 2006; 39: 520
- 6c Nair V, Biju AT, Vinod AU, Suresh E. Org. Lett. 2005; 7: 5139
- 6d Nair V, Deepthi A, Poonoth M, Santhamma B, Vellalath S, Babu BP, Mohan R, Suresh E. J. Org. Chem. 2006; 71: 2313
- 7a Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. J. Antibiot. 1991; 44: 113
- 7b Omura S, Matsuzaki K, Fujimoto T, Kosuge K, Furuya T, Fujita S, Nakagawa A. J. Antibiot. 1991; 44: 117
- 7c Barrett AG. M, Head J, Smith ML, Stock NS, White AJ. P, Williams DJ. J. Org. Chem. 1999; 64: 6005
- 7d Schwartz RE, Helms GL, Bolessa EA, Wilson KE, Giacobbe RA, Tkacz JS, Bills GF, Liesch JM, Zink DL, Curotto JE, Pramanik B, Onishi JC. Tetrahedron 1994; 50: 1675
- 7e Hiemstra H, Fortgens HP, Speckamp WN. Tetrahedron Lett. 1984; 25: 3115
- 7f Castelhano AL, Krantz A. J. Am. Chem. Soc. 1984; 106: 1877
- 8 (2Z)-3-(Anilinocarbonyl)-5-(4-aza-1-azoniabicyclo-[2.2.2]oct-1-yl)pent-2-en-2-olate (2a); Typical Procedure DABCO (156 mg, 1.05 equiv) was added to a solution of cyclopropane 1a (102 mg, 0.5 mmol) in H2O (1.0 mL), and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to r.t., and H2O was removed under reduced pressure to give a white solid. The crude product was washed with MeOH and EtOAc (×3), and dried under ambient conditions to give a white solid; yield: 150 mg (95%); mp 173–175 °C; 1H NMR (500 MHz, D2O): δ = 1.75–1.76 (d, J = 7.5 Hz, 3 H), 2.32–2.35 (t, J = 8.0 Hz, 2 H), 2.72–2.75 (t, J = 8.5 Hz, 2 H), 2.79–2.80 (d, J = 6.5 Hz, 6 H), 3.01–3.02 (d, J = 6.5 Hz, 6 H), 6.83–6.86 (t, J = 7.0 Hz, 1 H), 7.11–7.14 (t, J = 8.0 Hz, 2 H), 7.25–7.26 (d, J = 8.0 Hz, 2 H); 13C NMR (125 MHz, D2O): δ = 20.4, 24.1, 44.2, 51.8, 63.7, 93.2, 119.9, 123.1, 129.5, 139.6, 170.0, 181.4; HRMS (ESI-TOF): m/z [M + H] calcd for C18H26N3O2: 316.2025; found: 316.2021.
- 9 The reason for this is still unclear.
- 10a Liu X, Zhang N, Yang J, Liang Y, Zhang R, Dong D. J. Org. Chem. 2013; 78: 3323
- 10b Wang Z, Bi X, Liao P, Zhang R, Liang Y, Dong D. Chem. Commun. 2012; 48: 7076
- 10c Zhang Z, Zhang Q, Sun S, Xiong T, Liu Q. Angew. Chem. Int. Ed. 2007; 46: 1726
- 10d del Mar Sanchez Duque M, Baslé O, Isambert N, Gaudel-Siri A, Génisson Y, Plaquevent J.-C, Rodriguez J, Constantieux T. Org. Lett. 2011; 13: 3296
- 11 3-Acetyl-3-methyl-1-phenylpyrrolidin-2-one (3a); Typical Procedure DABCO (156 mg, 1.05 equiv) was added to a solution of cyclopropane 1a (102 mg, 0.5 mmol) in MeCN (1.0 mL), and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to r.t., and MeCN was removed under reduced pressure. A solution of MeI (0.047mL, 1.5 equiv) in DMF (2.0 mL) was added, and the mixture was stirred at r.t. for 30 min. Finally, NaOH (240 mg, 1.2 equiv) was added, and the mixture was stirred for 30 min. The mixture was poured into brine (10 mL) and extracted with EtOAc (3 × 10 mL). The organic phases were combined, washed with H2O (3 × 10 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (PE–Et2O) to give colorless crystals; yield: 94.5 mg (87%); mp 86–88 °C; 1H NMR (500 MHz, CDCl3): δ = 1.55 (s, 3 H), 1.84–1.90 (m, 1 H), 2.33 (s, 3 H), 2.81–2.85 (m, 1 H), 3.71–3.75 (m, 1 H), 3.75–3.87 (m, 1 H), 7.16 (t, J = 7.0 Hz, 1 H), 7.49 (t, J = 7.5 Hz, 2 H), 7.63 (t, J = 7.5 Hz, 2 H); 13C NMR (125 MHz, CDCl3): δ = 21.2, 26.0, 28.6, 45.8, 59.6, 119.8, 124.9, 128.8, 139.1, 172.4, 205.8; HRMS (ESI-TOF): m/z [M + H] calcd for C13H16NO2: 218.1181; found: 218.1192.
- 12a Katritzky AR, Wang Z, Wang M, Wilkerson CR, Hall CD, Akhmedov NG. J. Org. Chem. 2004; 69: 6617
- 12b Iaroshenko VO, Abbasi MS. A, Villinger A, Langer P. Adv. Synth. Catal. 2012; 354: 803
- 12c He C, Guo S, Huang L, Lei A. J. Am. Chem. Soc. 2010; 132: 8273
For reviews on cyclopropane chemistry, see:
For selected recent papers on Lewis acid catalyzed ring opening of cyclopropanes, see:
For Lewis base mediated ring-opening of cyclopropanes, see:
For work from our group on activated cyclopropanes under basic conditions, see:
Under acidic conditions, see:
For reviews on organocatalysis, see:
Zwitterions are widely used in organic synthesis; see:
Deacetylation is quite common in the reactions of β-dicarbonyl compounds under either acidic or basic conditions; for selected examples, see: