Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(03): 331-336
DOI: 10.1055/s-0035-1561282
DOI: 10.1055/s-0035-1561282
synpacts
Dehydrogenation Adjacent to Carbonyls Using Palladium–Allyl Intermediates
Further Information
Publication History
Received: 27 October 2015
Accepted after revision: 16 November 2015
Publication Date:
23 December 2015 (online)
Abstract
Palladium–allyl chemistry has historically been used as a means of allylation of nucleophiles, as developed by Tsuji and Trost in the 1970s. Also during this decade, the Saegusa oxidation, the most prominent palladium-catalyzed dehydrogenation reaction, was developed. This Synpacts article provides a historical overview of dehydrogenation adjacent to carbonyls and our recent contribution to this area: palladium–allyl catalyzed dehydrogenation of nitriles and esters.
-
References and Notes
- 1a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 2 Chen Y, Romaire JP, Newhouse TR. J. Am. Chem. Soc. 2015; 137: 5875
- 3 Astin S, Newman AC. C, Riley HL. J. Chem. Soc., Res. 1933; 391
- 5a Corey EJ, Schaefer JP. J. Am. Chem. Soc. 1960; 82: 917
- 5b Sharpless KB, Gordon KM. J. Am. Chem. Soc. 1976; 98: 300
- 6a Shenvi RA, Guerrero CA, Shi J, Li C.-C, Baran PS. J. Am. Chem. Soc. 2008; 130: 7241
- 6b Trost BM, Bringley DA, Zhang T, Cramer N. J. Am. Chem. Soc. 2013; 135: 16720
- 6c Tartakoff SS, Vanderwal CD. Org. Lett. 2014; 16: 1458
- 6d Kitajima M, Murakami Y, Takahashi N, Wu Y, Kogure N, Zhang R.-P., Takayama H.. Org. Lett. 2014; 16: 5000
- 7a Reich HJ, Reich IL, Renga JM. J. Am. Chem. Soc. 1973; 95: 5813
- 7b Sharpless KB, Lauer RF, Teranishi AY. J. Am. Chem. Soc. 1973; 95: 6137
- 7c Reich HJ, Wollowitz S. Org. React. 1993; 44: 1
- 7d Reich HJ, Wollowitz S. Org. React. 2004; 44: 1
- 8a Jones DN, Mundy D, Whitehouse RD. J. Chem. Soc. D 1970; 2: 86
- 8b Sharpless KB, Young MW, Lauer RF. Tetrahedron Lett. 1973; 14: 1979
- 9a Trost BM, Salzmann TN. J. Am. Chem. Soc. 1973; 95: 6840
- 9b Trost BM, Salzmann TN, Hiroi K. J. Am. Chem. Soc. 1976; 98: 4887
- 10 Mukaiyama T, Matsuo J.-i, Kitagawa H. Chem. Lett. 2000; 29: 1250
- 11 Matsuo J.-i, Aizawa Y. Tetrahedron Lett. 2005; 46: 407
- 12a Braude EA, Brook AG, Linstead RP. J. Chem. Soc., Res. 1954; 3569
- 12b Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 13a Ryu I, Murai S, Hatayama Y, Sonoda N. Tetrahedron Lett. 1978; 19: 3455
- 13b Bhattacharya A, DiMichele LM, Dolling UH, Grabowski EJ. J, Grenda VJ. J. Org. Chem. 1989; 54: 6118
- 14a Linstead RP, Thomas SL. S. J. Chem. Soc., Res. 1940; 1127
- 14b Fu PP, Harvey RG. Chem. Rev. 1978; 78: 317
- 15a Matsuura S, Iinuma M, Ishikawa K, Kagei K. Chem. Pharm. Bull. 1978; 26: 305
- 15b Shanker CG, Mallaiah BV, Srimannarayana G. Synthesis 1983; 310
- 16a Das Gupta AK, Chatterje RM, Paul M. J. Chem. Soc. C 1971; 3367
- 16b Tanaka T, Mashimo K, Wagatsuma M. Tetrahedron Lett. 1971; 12: 2803
- 16c Clarke PD, Fitton AO, Suschitzky H, Wallace TW. Tetrahedron Lett. 1986; 27: 91
- 16d Bhattacharya A, DiMichele LM, Dolling UH, Douglas AW, Grabowski EJ. J. J. Am. Chem. Soc. 1988; 110: 3318
- 17 Nicolaou KC, Zhong YL, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
- 18 Nicolaou KC, Montagnon T, Baran PS, Zhong YL. J. Am. Chem. Soc. 2002; 124: 2245
- 19 Nicolaou KC, Montagnon T, Baran PS. Angew. Chem. Int. Ed. 2002; 41: 993
- 20a Ito Y, Hirao T, Saegusa T. J. Org. Chem. 1978; 43: 1011
- 20b Larock RC, Hightower TR, Kraus GA, Hahn P, Zheng D. Tetrahedron Lett. 1995; 36: 2423
- 21a Porth S, Bats JW, Trauner D, Giester G, Mulzer J. Angew. Chem. Int. Ed. 1999; 38: 2015
- 21b Cámpora J, Maya CM, Palma P, Carmona E, Gutiérrez E, Ruiz C, Graiff C, Tiripicchio A. Chem. Eur. J. 2005; 11: 6889
- 21c Alexanian EJ, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 15627
- 22a Diao T, Stahl SS. J. Am. Chem. Soc. 2011; 133: 14566
- 22b Diao T, Wadzinski TJ, Stahl SS. Chem. Sci. 2012; 3: 887
- 23a Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
- 23b Diao T, Pun D, Stahl SS. J. Am. Chem. Soc. 2013; 135: 8205
- 24a Bordwell FG. Acc. Chem. Res. 1988; 21: 456
- 24b Zhang XM, Bordwell FG, Van Der Puy M, Fried HE. J. Org. Chem. 1993; 58: 3060
- 24c Ren J, Cramer CJ, Squires RR. J. Am. Chem. Soc. 1999; 121: 2633
- 25 It is unclear at this time at what point in the catalytic cycle the product alkene dissociates from palladium.
- 27 Michel BW, Steffens LD, Sigman MS. Org. React. 2014; 84: 75
- 28a Trost BM, Strege PE. J. Am. Chem. Soc. 1977; 99: 1649
- 28b Trost BM, Organ MG. J. Am. Chem. Soc. 1994; 116: 10320
- 29a Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
- 29b Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
- 30a Trost BM, Weber L. J. Am. Chem. Soc. 1975; 97: 1611
- 30b Frost CG, Howarth J, Williams JM. J. Tetrahedron: Asymmetry 1992; 3: 1089
- 30c Braun M, Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
- 31 Unstabilized nucleophiles, such as hydride donors, alkyl zinc halides, and others, undergo attack at palladium of the Pd–allyl unit. For examples, see ref. 26a.
- 32 Tsuji J, Takahashi K, Minami I, Shimizu I. Tetrahedron Lett. 1984; 25: 4783
- 33 John RA, Negishi E. J. Org. Chem. 1983; 48: 4098
For recent examples of halogenation/elimination in total synthesis, see:
Pd/C and a variety of other mild catalysts can also be used to effect dehydrogenation of such activated substrates, see: