Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(09): 1359-1370
DOI: 10.1055/s-0035-1561572
DOI: 10.1055/s-0035-1561572
paper
Trimethylchlorosilane-Mediated Mild α-Chlorination of 1,3-Dicarbonyl Compounds Promoted by Phenyliodonium Diacetate
Further Information
Publication History
Received: 18 November 2015
Accepted after revision: 01 February 2016
Publication Date:
02 March 2016 (online)
Abstract
Trimethylchlorosilane was used as chlorine source for the α-chlorination of 1,3-dicarbonyl compounds with phenyliodonium diacetate as oxidant at room temperature. The reaction allows the selective synthesis of α-monochlorinated products from different kinds of 1,3-dicarbonyl compounds in good yield. The potential possibility of this conversion for bromination has also been investigated.
Key words
chlorination - 1,3-dicarbonyl compounds - phenyliodonium diacetate - trimethylchlorosilane - Umpolung strategySupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561572.
- Supporting Information
-
References
- 1a De Kimpe N, Verhé R, Patai S. The Chemistry of α-Haloketones, α-Haloaldehydes, and α-Haloimines. In The Chemistry of Functional Groups. Patai S, Rappoport Z. John Wiley & Sons; Chichester: 1988
- 1b Larock RC. Comprehensive Organic Transformations . 2nd ed. Wiley; New York: 1999: 716
- 1c Thomas GX. Medicinal Chemistry: An Introduction . 2nd ed. John Wiley & Sons; Chichester: 2011
- 1d Tilstam U, Weinmann H. Org. Process Res. Dev. 2002; 6: 384
- 1e House HO. Modern Synthetic Reactions . 2nd ed. W. A. Benjamin; New York: 1972: 459
- 2a Dowd P, Kaufman C, Kaufman P. J. Org. Chem. 1985; 50: 882
- 2b Hakam K, Thielmann M, Thielmann T, Winterfeldt E. Tetrahedron 1987; 43: 2035
- 3a Meshram HM, Reddy PN, Vishnu P, Sadashiv K, Yadav JS. Tetrahedron Lett. 2006; 47: 991
- 3b Das B, Venkateswarlu K, Mahender G, Mahender I. Tetrahedron Lett. 2005; 46: 3041
- 3c Wang C, Tunge J. Chem. Commun. 2004; 2694
- 3d Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K, Horaguchi T. Chem. Commun. 2004; 470
- 3e Yang D, Yan Y.-L, Lui B. J. Org. Chem. 2002; 67: 7429
- 4a Rao AV. R, Singh AK, Reddy KM, Ravikumar K. J. Chem. Soc., Perkin Trans. 1 1993; 3171
- 4b Shi X, Dai L. J. Org. Chem. 1993; 58: 4596
- 5a Klimczyk S, Huang X, Fares C, Maulide N. Org. Biomol. Chem. 2012; 10: 4327
- 5b Zav’yalov SI, Sitkareva IV, Ezhova GI. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1992; 41: 356
- 5c Fraser RR, Kong F. Synth. Commun. 1988; 18: 1071
- 6a Akula R, Galligan M, Ibrahim H. Chem. Commun. 2009; 6991
- 6b Kim J.-J, Kweon D.-H, Cho S.-D, Kim H.-K, Lee S.-G, Yoon Y.-J. Synlett 2006; 194
- 6c Khan AT, Goswami P, Choudhury LH. Tetrahedron Lett. 2006; 47: 2751
- 6d Lee JC, Park JY, Yoon SY, Bae YH, Lee SJ. Tetrahedron Lett. 2004; 45: 191
- 6e Ibrahim H, Akula R, Galligan M. Synthesis 2011; 347
- 7a Varvoglis A. Hypervalent Iodine in Organic Synthesis . Academic Press; London: 1997
- 7b Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
- 7c Wirth T. Top. Curr. Chem. 2003; 224: 1-248
- 7d Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 7e Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 7f Zhdankin VV. ARKIVOC 2009; (i): 1
- 7g Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
- 7h Merritt EA, Olofsson B. Synthesis 2011; 517
- 7i Yusubov MS, Nemykin VN, Zhdankin VV. Tetrahedron 2010; 66: 5745
- 7j Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
- 8 Narayan R, Manna S, Antonchick AP. Synlett 2015; 26: 1785
- 9 Hara S, Sekiguchi M, Ohmori A, Fukuhara T, Yoneda N. Chem. Commun. 1996; 1899
- 10a Turner TC, Shibayama K, Boger DL. Org. Lett. 2013; 15: 1100
- 10b Shneider OS, Pisarevsky E, Fristrup P, Szpilman AM. Org. Lett. 2015; 17: 282
- 11 Galligan MJ, Akula R, Ibrahim H. Org. Lett. 2014; 16: 600
- 12 Sai Prathima P, Bikshapathi R, Rao VJ. Tetrahedron Lett. 2015; 56: 6385
- 13 Tao J, Tuck TN, Murphy GK. Synthesis 2016; 48: 772