Subscribe to RSS
DOI: 10.1055/s-0036-1588128
Tri(1-adamantyl)phosphine: Exceptional Catalytic Effects Enabled by the Synergy of Chemical Stability, Donicity, and Polarizability
Publication History
Received: 02 November 2016
Accepted after revision: 01 December 2016
Publication Date:
10 January 2017 (online)
![](https://www.thieme-connect.de/media/synlett/201703/lookinside/thumbnails/st-2016-p0746-sp_10-1055_s-0036-1588128-1.jpg)
Abstract
Tri(1-adamantyl)phosphine, a simple yet long-absent homoleptic phosphine, has finally been prepared. The simplicity of this compound beguiles its exceptional properties. The electron-releasing character eclipses all other alkylphosphines. The phosphine geometry and overall size are also more compact than anticipated, which may occur as a result of dispersion forces. We believe the donicity, marked resistance towards cyclometallation or P−C bond scission, and also substantial polarizability engendered by the three diamondoid fragments together account for the phenomenal performance of Pd-PAd3 catalysts during Suzuki–Miyaura coupling reactions. A correlation analysis is also described that provides support for polarizability as a potentially general influence on the properties of tertiary phosphines.
1 Introduction
2 Synthesis of Tri(1-adamantyl)phosphine
3 Reactions of Tri(1-adamantyl)phosphine Palladium Complexes
4 Electronic and Steric Properties of Tri(1-adamantyl)phosphine
5 Conclusion
-
References
- 1a de Meijere A, Diederich F. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 2008
- 1b Cross-Coupling Reactions: A Practical Guide . Miyaura N. Springer; Berlin/Heidelberg: 2003
- 1c Colacot T. New Trends in Cross-Coupling: Theory and Applications . Royal Society of Chemistry; Cambridge: 2014
- 2a Ziegler CB, Heck RF. J. Org. Chem. 1978; 43: 2941
- 2b Nishiyama M, Yamamoto T, Koie Y. Tetrahedron Lett. 1998; 39: 617
- 2c Littke AF, Fu GC. Angew. Chem. Int. Ed. 1998; 37: 3387
- 2d Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM. J. Org. Chem. 1999; 64: 5575
- 2e Mann G, Incarvito C, Rheingold AL, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 3224
- 2f Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 1473
- 2g Wolfe JP, Buchwald SL. Angew. Chem. Int. Ed. 1999; 38: 2413
- 2h Shelby Q, Kataoka N, Mann G, Hartwig J. J. Am. Chem. Soc. 2000; 122: 10718
- 2i Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
- 2j Stambuli JP, Stauffer SR, Shaughnessy KH, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 2677
- 2k Zapf A, Ehrentraut A, Beller M. Angew. Chem. Int. Ed. 2000; 39: 4153
- 2l Sather AC, Lee HG, De La Rosa VY, Yang Y, Müller P, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 13433
- 2m Handa S, Andersson MP, Gallou F, Reilly J, Lipshutz BH. Angew. Chem. Int. Ed. 2016; 55: 4914
- 3a Böhm VP. W, Gstöttmayr CW. K, Weskamp T, Herrmann WA. J. Organomet. Chem. 2000; 595: 186
- 3b Viciu MS, Kissling RM, Stevens ED, Nolan SP. Org. Lett. 2002; 4: 2229
- 4 Hartwig JF. Organotransition Metal Chemistry – From Bonding to Catalysis. University Science Books;; 2010: 261-266
- 5a Hartwig JF. Organotransition Metal Chemistry – From Bonding to Catalysis. University Science Books;; 2010: 321-324
- 5b Szabo MJ, Jordan RF, Michalak A, Piers WE, Weiss T, Yang S.-Y, Ziegler T. Organometallics 2004; 23: 5565
- 6 Tatsumi K, Hoffmann R, Yamamoto A, Stille JK. Bull. Chem. Soc. Jpn. 1981; 54: 1857
- 7 Hartwig JF. Inorg. Chem. 2007; 46: 1936
- 8 Crabtree RH. Chem. Rev. 2015; 115: 127
- 9 Ge S, Green RA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 1617
- 10a Kong KC, Cheng CH. J. Am. Chem. Soc. 1991; 113: 6313
- 10b Goodson FE, Wallow TI, Novak BM. J. Am. Chem. Soc. 1997; 119: 12441
- 11a Yandulov DV, Tran NT. J. Am. Chem. Soc. 2007; 129: 1342
- 11b Hartwig JF, Bergman RG, Andersen RA. J. Organomet. Chem. 1990; 394: 417
- 11c Lin W, Wilson SR, Girolami GS. Inorg. Chem. 1994; 33: 2265
- 11d Hirsekorn KF, Veige AS, Wolczanski PT. J. Am. Chem. Soc. 2006; 128: 2192
- 13 Louie J, Hartwig JF. Angew. Chem. Int. Ed. Engl. 1996; 35: 2359
- 14a Rataboul F, Zapf A, Jackstell R, Harkal S, Riermeier T, Monsees A, Dingerdissen U, Beller M. Chem. Eur. J. 2004; 10: 2983
- 14b Köllhofer A, Pullmann T, Plenio H. Angew. Chem. Int. Ed. 2003; 42: 1056
- 14c Köllhofer A, Plenio H. Chem. Eur. J. 2003; 9: 1416
- 14d Lundgren RJ, Sappong-Kumankumah A, Stradiotto M. Chem. Eur. J. 2010; 16: 1983
- 15a Fleckenstein CA, Plenio H. Chem. Soc. Rev. 2010; 39: 694
- 15b Agnew-Francis KA, Williams CM. Adv. Synth. Catal. 2016; 358: 675
- 16a Böttcher H.-C, Mayer P. Z. Naturforsch., B 2014; 69: 1237
- 16b Bennett MA, Milner DL. J. Am. Chem. Soc. 1969; 91: 6983
- 16c Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683
- 17 Hackett M, Whitesides GM. Organometallics 1987; 6: 403
- 18 Goerlich JR, Fischer A, Jones PG, Schmutzler R. Z. Naturforsch., B 1994; 49: 801
- 19 Brown J, Prabagar J, Cowley A. Synlett 2011; 2351
- 20 Sasaki T, Nakanishi A, Ohno M. J. Org. Chem. 1982; 47: 3219
- 21 Chen L, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
- 23 Cyclometalation at an Ad substituent has been observed when a more favorable metallacycle is formed. See, for example: Endo K, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 8525
- 24 Maier WF, Schleyer PV. R. J. Am. Chem. Soc. 1981; 103: 1891
- 25 Farina V. Adv. Synth. Catal. 2004; 346: 1553
- 26 Chan AL, Estrada J, Kefalidis CE, Lavallo V. Organometallics 2016; 35: 3257
- 27a Giri R, Lam JK, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 686
- 27b Peh G.-R, Kantchev EA. B, Er J.-C, Ying JY. Chem. Eur. J. 2010; 16: 4010
- 28a Navarro O, Kelly RA, Nolan SP. J. Am. Chem. Soc. 2003; 125: 16194
- 28b Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
- 28c Li H, Johansson Seechurn CC. C, Colacot TJ. ACS Catal. 2012; 2: 1147
- 29 For another catalyst system that effectively outcompetes protodeboronation, see: Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
- 30 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
- 31 Bedford RB, Cazin CS. J, Hazelwood SL. Angew. Chem. Int. Ed. 2002; 41: 4120
- 32 de Vries J In Organometallics as Catalysts in the Fine Chemical Industry . Vol. 42. Beller M, Blaser H.-U. Springer; Berlin/Heidelberg: 2012: 1-34
- 33a Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
- 33b Molander GA, Biolatto B. J. Org. Chem. 2003; 68: 4302
- 34a Schumann H, Stelzer O, Niederreuther U, Rösch L. Chem. Ber. 1970; 103: 1383
- 34b Wünsche MA, Mehlmann P, Witteler T, Buß F, Rathmann P, Dielmann F. Angew. Chem. Int. Ed. 2015; 54: 11857
- 34c Buß F, Mehlmann P, Mück-Lichtenfeld C, Bergander K, Dielmann F. J. Am. Chem. Soc. 2016; 138: 1840
- 35 IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.
- 36 Calculated indirectly from the (L)Rh(CO)(acac) stretching frequency according to the relationship: TEP = 0.5716 × νCO(Rh)+938.47.
- 37 Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
- 38a Datt MS, Nair JJ, Otto S. J. Organomet. Chem. 2005; 690: 3422
- 38b Clavier H, Nolan SP. Chem. Commun. 2010; 46: 841
- 38c Tolman CA. Chem. Rev. 1977; 77: 313
- 39 Charton M In Steric Effects in Drug Design . Springer; Berlin/Heidelberg: 1983: p 57-91
- 40 Rosel S, Balestrieri C, Schreiner PR. Chem. Sci. 2016; in press ; doi: 10.1039/C6SC02727J
- 41a Schmidbaur H, Brachthäuser B, Steigelmann O, Beruda H. Chem. Ber. 1992; 125: 2705
- 41b Muir JA, Muir MM, Pulgar LB, Jones PG, Sheldrick GM. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1985; 41: 1174
- 41c Angermaier K, Zeller E, Schmidbaur H. J. Organomet. Chem. 1994; 472: 371
- 41d Tiekink E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989; 45: 1233
- 41e King AS, Ferguson G, Britten JF, Valliant JF. Inorg. Chem. 2004; 43: 3507
- 42a Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JE. P, Carlson RM. K, Fokin AA. Nature 2011; 477: 308
- 42b Grimme S, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 12639
- 42c Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JE. P, Carlson RM. K, Schreiner PR. J. Am. Chem. Soc. 2012; 134: 13641
- 43a Ahlquist MS. G, Norrby P.-O. Angew. Chem. Int. Ed. 2011; 50: 11794
- 43b Lyngvi E, Sanhueza IA, Schoenebeck F. Organometallics 2015; 34: 805
- 44 Strem Chemicals Inc., catalogue no. 15-0935.
For examples of very strongly donating phosphines with P–Sn or P–N bonds, see: