Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(15): 2046-2050
DOI: 10.1055/s-0036-1588863
DOI: 10.1055/s-0036-1588863
letter
Direct ortho Arylation of Anisoles via the Formation of Four-Membered Lithiumcycles/Palladacycles
The financial support from the ‘973’ Program (2015CB856500), the NSFC (Grant No. 21672159, 21302136), and Tianjin Natural Science Foundation (Grant No. 13JCQNJC04800) are gratefully acknowledged.
Further Information
Publication History
Received: 06 April 2017
Accepted after revision: 15 May 2017
Publication Date:
21 June 2017 (online)
◊ These authors contributed equally
Abstract
We report here our latest discovery on the directed lithiation and palladium-catalyzed arylation of anisoles. During this research, the formation of a four-membered lithiumcycle followed by transmetalation to the corresponding palladacycle has been achieved, which is difficult to be obtained from palladium-catalyzed C–H activation processes. This approach has provided an alternative way of introducing functionalities to arenes such as anisoles, thioanisoles, and anilines. This approach also features an excellent monoselectivity compared with reactions under transition-metal-catalyzed conditions.
Key words
directed lithiation - lithiumcycle - transmetalation - mono-selectivity - palladium-catalyzed arylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588863.
- Supporting Information
-
References and Notes
- 1a Davies HM. L. Beckwith RE. J. Chem. Rev. 2003; 103: 2861
- 1b Goldman AS. Goldberg KI. Activation and Functionalization of C–H Bonds. In ACS Symposium Series 885 . Goldberg KI. Goldman AS. ACS; Washington, DC: 2004
- 1c Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
- 2a He J. Wasa M. Chan KS. Shao Q. Yu JQ. Chem. Rev. 2016;
- 2b Yang L. Huang H. Chem. Rev. 2015; 115: 3468
- 2c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 2d Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 2e Sigman MS. Werner EW. Acc. Chem. Res. 2011; 45: 874
- 2f Ackermann L. Acc. Chem. Res. 2013; 47: 281
- 2g Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 2h Zhang F. Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 2i Huang H. Ji X. Wu W. Jiang H. Chem. Soc. Rev. 2015; 44: 1155
- 2j Huang Z. Lim HN. Mo F. Young MC. Dong G. Chem. Soc. Rev. 2015; 44: 7764
- 2k Wang F. Yu S. Li X. Chem. Soc. Rev. 2016; 45: 6462
- 3a Zhu R. Wang Y. Liu J. Wang Q. Huang J. Synthesis 2017; 49: 1335
- 3b Liu W. Yu Q. Hu L. Chen Z. Huang J. Chem. Sci. 2015; 6: 5768
- 3c Yu Q. Zhang N. Huang J. Lu S. Zhu Y. Yu X. Zhao K. Chem. Eur. J. 2013; 19: 11184
- 3d Zhang N. Yu Q. Chen R. Huang J. Xia Y. Zhao K. Chem. Commun. 2013; 49: 9464
- 3e Li B. Jiao P. Zhong H. Huang J. Synlett 2013; 24: 2431
- 3f Zhang N. Li B. Zhong H. Huang J. Org. Biomol. Chem. 2012; 10: 9429
- 3g Zhong H. Yang D. Wang S. Huang J. Chem. Commun. 2012; 48: 3236
- 4a Liu L. Wang Q. Zhu R. Huang J. Synlett 2016; 27: 1450
- 4b Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
- 4c Duong HA. Gilligan RE. Cooke ML. Phipps RJ. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
- 4d Saidi O. Marafie J. Ledger AE. W. Liu PM. Mahon MF. Kohn GK. Whittlesey MK. Fros CG. J. Am. Chem. Soc. 2011; 133: 19298
- 4e Hofmann N. Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
- 4f Yu Q. Hu L. Wang Y. Zheng S. Huang J. Angew. Chem. Int. Ed. 2015; 54: 15284
- 4g Teskey CJ. Lui YW. Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11677
- 4h Leow D. Li G. Mei T. Yu JQ. Nature (London, U.K.) 2012; 486: 518
- 4i Dong Z. Wang J. Dong G. J. Am. Chem. Soc. 2015; 137: 5887
- 4j Wang X. Gong W. Fang L. Zhu R. Li S. Engle KM. Yu JQ. Nature (London, U.K.) 2015; 519: 334
- 4k Maji A. Bhaskararao B. Singha S. Sunoj RB. Maiti D. Chem. Sci. 2016; 7: 3147
- 5a Bag S. Patra T. Modak A. Deb A. Maity S. Dutta U. Dey A. Kancherla R. Maji A. Hazra A. Bera M. Maiti D. J. Am. Chem. Soc. 2015; 137: 11888
- 5b Patra T. Bag S. Kancherla R. Mondal A. Dey A. Pimparkar S. Agasti S. Modak A. Maiti D. Angew. Chem. Int. Ed. 2016; 55: 7751
- 6a Snieckus V. Chem. Rev. 1990; 90: 879
- 6b Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
- 6c Steffen P. Unkelbach C. Christmann M. Hiller W. Strohmann C. Angew. Chem. Int. Ed. 2013; 52: 9836
- 6d Jastrzebski JT. Arink AM. Kleijn H. Braam TW. Lutz M. Spek AL. van Koten G. J. Am. Chem. Soc. 2013; 135: 13371
- 6e Mallardo V. Rizzi R. Sassone FC. Mansueto R. Perna FM. Salomone A. Capriati V. Chem. Commun. 2014; 50: 8655
- 6f Rouquet G. Blakemore DC. Ley SV. Chem. Commun. 2014; 50: 8908
- 6g Slocum DW. Reinscheld TK. White CB. Timmons MD. Shelton PA. Slocum MG. Sandlin RD. Holland EG. Kusmic D. Jennings JA. Tekin KC. Nguyen Q. Bush SJ. Keller JM. Whitley PE. Organometallics 2013; 32: 1674
- 7a Haas D. Hammann JM. Greiner R. Knochel P. ACS Catal. 2016; 6: 1540
- 7b Seel S. Thaler T. Takatsu K. Zhang C. Zipse H. Straub BF. Mayer P. Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
- 7c Millet A. Baudoin O. Org. Lett. 2014; 16: 3998
- 7d Achonduh GT. Hadei N. Valente C. Avola S. O'Brien CJ. Organ MG. Chem. Commun. 2010; 46: 4109
- 7e Colombe JR. Bernhardt S. Stathakis C. Buchwald SL. Knochel P. Org. Lett. 2013; 15: 5754
- 8a Rosquete LI. Cabrera-Serra MG. Piñero JE. Martín-Rodríguez P. Fernández-Pérez L. Luis JG. McNaughton-Smith G. Abad-Grillo T. Bioorg. Med. Chem. 2010; 18: 4530
- 8b Lau SY. Hughes G. O'Shea PD. Davies IW. Org. Lett. 2007; 9: 2239
- 8c Sun K. Wang L. Wang ZX. Organometallics 2008; 27: 5649
- 8d Chen MT. Lee WY. Tsai TL. Liang LC. Organometallics 2014; 33: 5852
- 8e Wang ZX. Chai ZY. Eur. J. Inorg. Chem. 2007; 4492
- 9a Lu JY. Wan H. Zhang J. Wang Z. Li Y. Du Y. Li C. Liu ZT. Liu ZW. Lu J. Chem. Eur. J. 2016; 22: 17542
- 9b Vila C. Hornillos V. Giannerini M. Fañanás-Mastral M. Feringa BL. Chem. Eur. J. 2014; 20: 13078
- 9c Murahashi SI. Tanba Y. Yamamura M. Moritani I. Tetrahedron Lett. 1974; 15: 3749
- 9d Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 10028
- 9e Smith AB. III. Hoye AT. Martinez-Solorio D. Kim WS. Tong R. J. Am. Chem. Soc. 2012; 134: 4533
- 9f Martinez-Solorio D. Melillo B. Sanchez L. Liang Y. Lam E. Houk KN. J. Am. Chem. Soc. 2016; 138: 1836
- 9g Murahashi S. Tamba Y. Yamamura M. Yoshimura N. J. Org. Chem. 1978; 43: 4099
- 9h Lee S. Jørgensen M. Hartwig JF. Org. Lett. 2001; 3: 2729
- 10a Jia Z. Liu Q. Peng XS. Wong HN. Nat. Commun. 2016; 7
- 10b Jhaveri SB. Carter KR. Chem. Eur. J. 2008; 14: 6845
- 10c Nagaki A. Kenmoku A. Moriwaki Y. Hayashi A. Yoshida JI. Angew. Chem. 2010; 122: 7705
- 11 Burstein HJ. Temin S. Anderson H. Buchholz TA. Davidson NE. Gelmon KE. Giordano SH. Hudis CA. Rowden D. Solky AJ. Stearns V. Winer EP. Griggs JJ. J. Clin. Oncol. 2014; 32: 2255
- 12 Albright FF. Butler AM. Hampton AO. Smith P. New Eng. J. Med. 1937; 216: 727
- 13a Buter J. Heijnen D. Vila C. Hornillos V. Otten E. Giannerini M. Minnaard AJ. Feringa BL. Angew. Chem. Int. Ed. 2016; 55: 3620
- 13b Pinxterhuis EB. Giannerini M. Hornillos V. Feringa BL. Nat. Commun. 2016; 7
- 13c Vila C. Giannerini M. Hornillos V. Fañanás-Mastral M. Feringa BL. Chem. Sci. 2014; 5: 1361
- 13d Giannerini M. Fañanás-Mastral M. Feringa BL. Nat. Chem. 2013; 5: 667
- 13e Fañanás-Mastral M. Pérez M. Bos PH. Rudolph A. Harutyunyan SR. Feringa BL. Angew. Chem. Int. Ed. 2012; 51: 1922
- 13f Pérez M. Fañanás-Mastral M. Bos PH. Rudolph A. Harutyunyan SR. Feringa BL. Nat. Chem. 2011; 3: 377
- 14a Wang Y. Liu J. Huang L. Zhu R. Huang X. Moir R. Huang J. Chem. Commun. 2017; 53: 4589
- 14b Klumpp GW. Luitjes H. Schakel M. de Kanter FJ. J. Schmitz RF. van Eikema Hommes NJ. R. Angew. Chem. Int. Ed. 1992; 31: 633
- 15a Murahashi S-I. Yamamura M. Yanagisawa K-I. Mita N. Kondo K. J. Org. Chem. 1979; 44: 2408
- 15b Murahashi S-I. Tamba Y. Yamamura M. Yoshimura N. J. Org. Chem. 1978; 43: 4099
- 16 General Procedure for Direct ortho Arylation of Anisoles A 5 mL well-dried round-bottomed flask was charged with nitrogen through Schlenk line. To a solution of the corresponding substrate (0.2 mmol) and TMEDA (34.8 mg, 1.5 equiv) in Et2O (0.4 M, 0.5 mL), n-BuLi (2.4 M, 0.125 mL, 1.5 equiv) was added dropwise at r.t. Then the reaction was allowed to stir for 0.5 h at r.t. In another 10 mL well-dried flask, the aryl halides (ArX, X = Br or I, 2 equiv), Pd2(dba)3 (9.2 mg, 5 mol%) and P(t-Bu)3 (1.0 M in Tol, 0.04 mL, 20 mol%) were dissolved in toluene (0.4 mL), and the solution was stirred for 5 min. Then the above organolithium solution was added dropwise at 0 °C, and the reaction was then allowed to stir at 50 °C for another 3 h. The mixture was quenched with sat. aq NH4Cl, extracted with EtOAc (3 × 5 mL), dried over anhydrous Na2SO4, filtered, and concentrated under vacuo. The residue was purified by column chromatography to get the product. (Z)-2-{[5-(1,2-Diphenylbut-1-en-1-yl)-3′-methoxy-(1,1′-biphenyl)-2-yl]oxy}-N,N-dimethylethanamine (8a) Following the general procedure, the amine 8a was obtained after column chromatography as a colorless oil (X = I, 26 mg, 27 % yield). 1H NMR (600 MHz, CDCl3): δ = 7.35 (t, J = 6.5 Hz, 2 H), 7.29–7.20 (m, 5 H), 7.19–7.13 (m, 4 H), 6.86 (s, 1 H), 6.77 (d, J = 8.0 Hz, 2 H), 6.69 (m, 2 H), 6.64 (d, J = 8.0 Hz, 1 H), 3.94 (t, J = 5.0 Hz, 2 H), 3.76 (s, 3 H), 2.59 (t, J = 5.0 Hz, 2 H), 2.46 (q, J = 6.5 Hz, 2 H), 2.21 (s, 6 H), 0.93 (t, J = 7.0 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 158.9, 153.7, 143.6, 142.6, 141.6, 139.8, 138.1, 135.7, 133.7, 130.8, 129.8, 129.5, 129.3, 128.4, 128.1, 128.0, 126.6, 126.1, 122.2, 114.7, 112.7, 111.6, 66.7, 58.0, 55.3, 45.9, 29.1, 13.6. ESI-HRMS: m/z [M + H]+ calcd for (C33H36NO2): 478.2746; found: 478.2745.
For selected recent reviews, see:
For selected recent reviews, see:
Selected recent literature in Li–Zn transmetalation:
Selected recent literature in Li–Mg transmetalation:
Selected recent literature in Li–Pd transmetalation:
Selected recent literature in Li transmetalation with other metals: