Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(02): 219-224
DOI: 10.1055/s-0036-1589112
DOI: 10.1055/s-0036-1589112
letter
Elemental Sulfur-Mediated Decarboxylative Redox Cyclization Reaction: Copper-Catalyzed Synthesis of 2-Substituted Benzothiazoles
We thank the National High Technology Research and Development Program of China (863 Program 2014AA022100), Six Talent Peaks Project in Jiangsu Province (No. 2015-SWYY-016) and Graduate Student Innovation Project in Jiangsu Province (Grant No. SJCX17_0287) for supporting this research.Further Information
Publication History
Received: 30 July 2017
Accepted after revision: 03 September 2017
Publication Date:
27 September 2017 (online)
Abstract
A S8-mediated directed decarboxylative redox-cyclization strategy for the synthesis of 2-substituted benzothiazoles from o-iodoanilines, arylacetic acids, and elemental sulfur catalyzed by cheap copper metal has been developed. This reaction is operationally simple, ligand-free, compatible with a wide range of functional groups, and provides the desired products in good to excellent yields. In addition, a gram-scale experiment was carried out to furnish PMX 610, an antitumor drug.
Key words
benzothiazoles - decarboxylative cyclization - o-iodoanilines - arylacetic acids - elemental sulfurSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589112.
- Supporting Information
-
References and Notes
- 1a Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
- 1b Samanta S. Das S. Biswas P. J. Org. Chem. 2013; 78: 11184
- 1c Nguyen TB. Ermolenko L. Al-Mourabit A. Org. Lett. 2013; 15: 4218
- 1d Banerjee M. Chatterjee A. Kumar V. Bhutia ZT. Khandare DG. Majik MS. Roy BG. RSC Adv. 2015; 74: 39606
- 1e Urzúa JI. Contreras R. Salas CO. Ricardo AT. RSC Adv. 2016; 85: 82401
- 1f Hu R. Li X. Tong Y. Miao D. Pan Q. Jiang Z. Gan H. Han S. Synlett 2016; 27: 1387
- 1g He K. Tan F. Zhou C. Zhou G. Yang X. Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
- 2a Bradshaw TD. Westwell AD. Curr. Med. Chem. 2004; 11: 1009
- 2b Choi SJ. Park HJ. Lee SK. Kim SW. Han G. Choo HY. P. Bioorg. Med. Chem. 2006; 4: 1229
- 2c Weekes AA. Weatwell AD. Curr. Med. Chem. 2009; 19: 2430
- 2d Shi H. Ji S. Bian B. Dyes Pigm. 2007; 73: 394
- 2e Sharma H. Singh N. Jang DO. Green Chem. 2014; 12: 4922
- 3a Bryson HM. Fulton B. Benfield PM. Drugs 1996; 52: 549
- 3b Ding Q. Huang X. Wu J. J. Comb. Chem. 2009; 11: 1047
- 3c Mortimer CG. Wells G. Crochard JP. Stone EL. Bradshaw TD. Stevens MF. G. Westwell AD. J. Med. Chem. 2006; 49: 179
- 3d Gao Y. Song Q. Cheng G. Cui X. Org. Biomol. Chem. 2014; 12: 1044
- 4a Sakamoto T. Mori K. Akiyama T. Org. Lett. 2012; 14: 3312
- 4b Liao Y. Qi H. Chen S. Jiang P. Zhou W. Deng G. Org. Lett. 2012; 14: 6004
- 4c Sun Y. Jiang H. Wu W. Org. Lett. 2013; 15: 1598
- 4d Tong Y. Pan Q. Jiang Z. Miao D. Shi X. Han S. Tetrahedron Lett. 2014; 55: 5499
- 5a Do HQ. Khan RM. Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
- 5b Li B. Yang S. Shi Z. Synlett 2008; 949
- 5c Huang J. Chan J. Chen Y. Borths CJ. Baucom KD. Larsen RD. Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
- 5d Liu B. Guo Q. Cheng Y. Lan J. You J. Chem. Eur. J. 2011; 17: 13415
- 5e Nishino M. Hirano K. Satoh T. Miura M. Angew. Chem. 2012; 124: 7099
- 6 Deng H. Li Z. Ke F. Zhou X. Chem. Eur. J. 2012; 18: 4840
- 7 Wang R. Ding Y. Liu H. Peng S. Ren J. Li L. Tetrahedron Lett. 2014; 55: 945
- 8a Wang Q. Zhang S. Guo F. Zhang B. Hu P. Wang Z. J. Org. Chem. 2012; 77: 11161
- 8b Qin X. Sun D. You Q. Cheng Y. Lan J. You J. Org. Lett. 2015; 17: 1762
- 8c Yang B. Xu X. Qing F. Org. Lett. 2016; 18: 5956
- 8d Biafora A. Krause T. Hackenberger D. Belitz F. Gooßen L. Angew. Chem. 2016; 55: 14752
- 8e Vandamme M. Bouchard L. Gilbert A. Keita M. Paquin J. Org. Lett. 2016; 18: 6468
- 8f Liu L. Wang Z. Green Chem. 2017; 19: 2076
- 9a Huang Y. He X. Lin X. Rong M. Weng Z. Org. Lett. 2014; 16: 3284
- 9b Nguyen TB. Ermolenko L. Retailleau P. Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
- 9c Zhang G. Yi H. Chen H. Bian C. Liu C. Lei A. Org. Lett. 2014; 16: 6156
- 9d Xu J. Zhang L. Li X. Gao Y. Tang G. Zhao Y. Org. Lett. 2016; 18: 1266
- 9e Meng L. Fujikawa T. Kuwayama M. Segawa Y. J. Am. Chem. Soc. 2016; 138: 10351
- 9f Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
- 10 Gan H. Miao D. Pan Q. Hu R. Li X. Han S. Chem. Asian J. 2016; 11: 1770
- 11a Ray S. Das P. Banerjee B. Bhaumikb A. Mukhopadhyayet C. RSC Adv. 2015; 5: 72745
- 11b Liu B. Zhu N. Hong H. Han L. Tetrahedron 2015; 71: 9287
- 11c Du G. Zhu N. Han L. Hong H. Suo Q. Heterocycles 2015; 91: 1723
- 12a Downer NK. Jackson YA. Org. Biomol. Chem. 2004; 2: 3039
- 12b Bose SD. Idrees M. Srikanth B. Synthesis 2007; 819
- 12c Cheng Y. Peng Q. Fan W. Li P. J. Org. Chem. 2014; 79: 5812
- 13a Antonello S. Daasbjerg K. Jensen H. Taddei F. Maran F. J. Am. Chem. Soc. 2003; 125: 12905
- 13b Jiang Y. Qin Y. Xie S. Zhang X. Dong J. Ma D. Org. Lett. 2009; 11: 5250
- 13c Park N. Heo Y. Kunar MR. Kim Y. Song KH. Lee S. Eur. J. Org. Chem. 2012; 43: 1984
- 14 Guntreddi T. Vanjari R. Singh KN. Org. Lett. 2014; 16: 3624
- 15a Song Q. Feng Q. Zhou M. Org. Lett. 2013; 15: 5990
- 15b Dang P. Zeng W. Liang Y. Org. Lett. 2015; 17: 34
- 15c Fan L. Shang Y. Li X. Hua W. Chin. Chem. Lett. 2015; 26: 77
- 16 General Procedure for the Synthesis of Benzothiazoles A mixture of o-iodoaniline (0.5 mmol, 1 equiv), arylacetic acid (0.6 mmol), elemental sulfur (1.5 mmol), Cu(OAc)2·H2O (20 mmol%), and NaOH (1.0 mmol) in DMSO (3 mL) was put into a sealed pressure vessel (25 mL) containing a magnetic stirring bar. The tube was purged with nitrogen three times, and then capped and stirred in a preheated oil bath at 130 °C for 24 h. The reaction mixture then cooled to r.t. and extracted with EtOAc (3 × 10 mL), the organic layer was washed with sat. NaCl (2 × 10 mL), dried over anhydrous Na2SO4, evaporated under vacumm, and then purified by silica gel column chromatography (PE–EtOAc 200:1) to give pure compound 3aa in 98% yield. Selected Spectral Data for 2-Phenylbenzothiazole (3aa) 1H NMR (300 MHz, CDCl3): δ = 8.09–8.11 (m, 3 H), 7.90 (d, J = 7.8 Hz, 1 H), 7.48–7.52 (m, 4 H), 7.38 (t, J = 7.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 168.0, 154.1, 135.1, 133.6, 130.9, 129.0, 127.5, 126.2, 125.1, 123.2, 121.6.