Subscribe to RSS
DOI: 10.1055/s-0036-1591536
Electrophilic Metal Homoenolates and Their Application in the Synthesis of Cyclopropylamines
We thank NSERC (DG, CRC and USRA programs), the Canada Foundation for Innovation (Project Number 35261), the Ontario Research Fund and the University of Toronto for financial support of this work. L.R.M. thanks the province of Ontario for a graduate scholarship (OGS).Publication History
Received: 20 December 2017
Accepted: 08 January 2018
Publication Date:
19 February 2018 (online)
Abstract
Since their discovery, metal homoenolates have been widely explored as carbon-based nucleophiles for the β-functionalization of carbonyl derivatives. Only recently has it been reported that metal homoenolates can react as carbonyl electrophiles. In this context, we have recently discovered that cyclopropylamines can be prepared from cyclopropanols via zinc homoenolate intermediates. This Synpacts article will present an overview of the reactivity of homoenolates and our strategy to employ these intermediates for the synthesis of cyclopropylamines. Key mechanistic observations and their influence on reaction optimization will also be discussed.
1 Introduction
2 Homoenolates as Nucleophiles—Selected Reactivity
3 Homoenolates as Electrophilic Reagents
4 Conclusion
-
References
- 1 Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
- 2a Kuwajima I. Nakamura E. Top. Curr. Chem. 1990; 155: 1
- 2b Crimmins MT. Nantermet PG. Org. Prep. Proc. Int. 1993; 25: 41
- 3 Nikon A. Lambert JL. J. Am. Chem. Soc. 1962; 84: 4604
- 4 Nakamura E. Kuwajima I. J. Am. Chem. Soc. 1983; 105: 651
- 5 Homoenolates of various metals have been successfully isolated, but those for some metals (e.g., sodium and potassium) remain elusive because of the extreme equilibrium towards the ring-closed tautomer. For a report on the preparation of homoenolates of several metals see: Nakamura E. Shimada J. Kuwajima I. Organometallics 1985; 4: 641
- 6a Kulinkovich OG. Chem. Rev. 2003; 103: 2597
- 6b Nikolaev A. Orellana A. Synthesis 2016; 48: 1741
- 6c Fumagalli G. Stanton S. Bower JF. Chem. Rev. 2017; 117: 9404
- 7 He Z. Zajdlik A. Yudin AK. Acc. Chem. Res. 2014; 47: 1029
- 8 Mills LR. Arbelaez LM. B. Rousseaux SA. L. J. Am. Chem. Soc. 2017; 139: 11357
- 9a Ahlbrecht H. Beyer U. Synthesis 1999; 3: 365
- 9b Whisler MC. Beak P. J. Org. Chem. 2003; 68: 1207
- 9c Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 9d Nithiy N. Rosa D. Orellana A. Synthesis 2013; 45: 3199
- 9e Molander GA. Jean-Gérard L. J. Org. Chem. 2009; 74: 1297 and references therein.
- 10 Murai S. Ryu I. Sonoda N. J. Organomet. Chem. 1983; 250: 121
- 11a Kulinkovich OG. Sviridov SV. Vasilevsky DA. Prityckaja TS. Zh. Org. Khim. 1989; 25: 2245
- 11b Kulinkovich OG. Sviridov SV. Vasilevski DA. Synthesis 1991; 234 see also ref. 6a and references therein
- 12 Rühlmann K. Synthesis 1971; 236
- 13 Gibson DH. DePuy CH. Chem. Rev. 1974; 74: 605
- 14 Nakamura E. Kuwajima I. J. Am. Chem. Soc. 1977; 99: 7360
- 15a Nakamura E. Aoki S. Sekiya K. Oshino J. Kuwajima I. J. Am. Chem. Soc. 1987; 109: 8056
- 15b Aoki S. Fujimura T. Nakamura E. Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
- 16a Rosa D. Orellana A. Org. Lett. 2011; 13: 110
- 16b Cheng K. Walsh PJ. Org. Lett. 2013; 15: 2298
- 16c Rosa D. Orellana A. Chem. Commun. 2013; 49: 5420
- 16d Nithiy N. Orellana A. Org. Lett. 2014; 16: 5854
- 16e Murali RV. N. S. Rao NN. Cha JK. Org. Lett. 2015; 17: 3854
- 16f Ye Z. Dai M. Org. Lett. 2015; 17: 2190
- 16g Li Y. Ye Z. Bellman TM. Chi T. Dai M. Org. Lett. 2015; 17: 2186
- 16h Kananovich DG. Konik YA. Zubrytski DM. Järving I. Lopp M. Chem. Commun. 2015; 51: 8349
- 16i He X.-P. Shu Y.-J. Dai J.-J. Zhang WM. Feng YS. Xu HJ. Org. Biomol. Chem. 2015; 13: 7159
- 16j Konik YA. Elek GZ. Kaabel S. Järving I. Lopp M. Kananovich DG. Org. Biomol. Chem. 2017; 15: 8334
- 16k Feng Y.-S. Shu Y.-J. Cao P. Xu T. Xu H.-J. Org. Biomol. Chem. 2017; 15: 3590
- 17a Crimmins MT. Nantermet PG. J. Org. Chem. 1990; 55: 4235
- 17b Crimmins MT. Nantermet PG. Trotter BW. Vallin IM. Watson PS. McKerlie LA. Reinhold TL. Cheung W.-H. Stetson KA. Dedopoulou D. Gray JL. J. Org. Chem. 1993; 58: 1038
- 18 Nikolaev A. Nithiy N. Orellana A. Synlett 2014; 25: 2301
- 19 Davis DC. Walker KL. Hu C. Zare RN. Waymouth RM. Dai M. J. Am. Chem. Soc. 2016; 138: 10693
- 20 See ref. 19 and references therein.
- 21a Nomura K. Oshima K. Matsubara S. Tetrahedron Lett. 2004; 45: 5957
- 21b Cheng K. Carrol PJ. Walsh PJ. Org. Lett. 2011; 13: 2346
- 22 The proposed iminium intermediate is extremely short-lived and we have not been able to directly observe it. However, if the reaction is performed with a primary amine, the protonated homoenamide is detected upon aqueous quench as the corresponding imine.
- 23a Roberts JD. Chambers VC. J. Am. Chem. Soc. 1951; 73: 5034
- 23b DePuy CH. Schnack LG. Hausser JW. Wiedemann W. J. Am. Chem. Soc. 1965; 87: 4006
- 23c Banert K. Chem. Ber. 1985; 118: 1564
- 23d Aksenov VS. Terent’eva GA. Savinykh YV. Russ. Chem. Rev. 1980; 49: 549 and references therein
- 24 Johnson NW. Kasparec J. Rouse MB. Tian X. Miller WH. Suarez D. U.S. Patent 9346840B2, 2016
- 25 The direction of cyclopropanol ring-opening has been well studied and happens toward the carbon that best stabilizes the partial negative charge: DePuy C. H. Acc. Chem. Res. 1968, 1, 33 see also ref. 6a and references therein.
For early reviews on metal homoenolates, see:
For selected reviews on ring-opening reactions of cyclopropanols:
For examples of non-cyclopropanol-derived homoenolates and homoenolate equivalents e.g., lithium:
Palladium:
Boron:
For select recent examples, see: β-Arylation:
β-Benzylation:
β-Alkynylation:
β-Amination:
β-Trifluoromethylation:
β-Sulfonylation:
β-Cyanation:
Nucleophilic substitution reactions at cyclopropanol derivatives usually give ring-opened products: