Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(04): 425-429
DOI: 10.1055/s-0036-1591720
DOI: 10.1055/s-0036-1591720
cluster
Intramolecular Aminotrifluoromethanesulfinyloxylation of ω-Aminoalkenes by CF3SO2Na/Pd(OAc)2/PhI(OAc)2/ t BuOCl/PivOH System
JSPS KAKENHI Grant Number JP 16H01142 in Middle Molecular Strategy.Further Information
Publication History
Received: 15 September 2017
Accepted after revision: 16 October 2017
Publication Date:
13 November 2017 (online)
Published as part of the Cluster Alkene Halofunctionalization
Abstract
The first example of palladium-catalyzed intramolecular aminotrifluoromethanesulfinyloxylation of unactivated ω-aminoalkenes has been achieved. Reaction conditions are rather unique with a complex consisting of CF3SO2Na/Pd(OAc)2/PhI(OAc)2/ t BuOCl/PivOH to provide 6-endo-cyclized type products with a piperidine skeleton. Yields are moderate, and SO2 is not extruded. This method also provides the first synthesis of 3-trifluoromethanesulfinyloxy piperidine derivatives.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591720.
- Supporting Information
-
References and Notes
- 1a Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 1b Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
- 2a Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
- 2b Hong Z. Weber SG. Teflon AF Materials. In Topics in Current Chemistry . Vol. 308. Horváth IT. Springer; Berlin: 2012: 307
- 2c Kirsch P. Modern Fluoroorganic Chemistry . Wiley-VCH; Weinheim: 2013
- 3a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3b Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 3c Kawai H. Shibata N. Chem. Rec. 2014; 14: 1024
- 3d Campbell MG. Ritter T. Chem. Rev. 2015; 115: 612
- 3e Yang X. Wu T. Phipps RJ. Toste FD. Chem. Rev. 2015; 115: 826
- 3f Fustero S. Simon-Fuentes A. Barrio P. Haufe G. Chem. Rev. 2015; 115: 871
- 3g Huang Y.-Y. Yang X. Chen Z. Verpoort F. Shibata N. Chem. Eur. J. 2015; 21: 8664
- 3h Champagne A. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 3i Shibata N. Bull. Chem. Soc. Jpn. 2016; 89: 1307
- 4a Prakash GK. S. Yudin AK. Chem. Rev. 1997; 97: 757
- 4b Ma J.-A. Cahard D. Chem. Rev. 2008; 108: PR1
- 4c Shibata N. Matsnev A. Cahard D. Beilstein J. Org. Chem. 2010; 6: No. 65
- 4d Nie J. Guo H.-C. Cahard D. Ma J.-M. Chem. Rev. 2011; 111: 455
- 4e Barata-Vallejo S. Lantaño B. Postigo A. Chem. Eur. J. 2014; 20: 16806
- 4f Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 4g Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
- 4h Ni C. Hu M. Hu J. Chem. Rev. 2015; 115: 765
- 5a Tlili A. Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
- 5b Besset T. Poisson T. Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
- 5c Toulgoat F. Alazet S. Billard T. Eur. J. Org. Chem. 2014; 2415
- 5d Zhang M. Chen J. Chen Z. Weng Z. Tetrahedron 2016; 72: 3525
- 5e Chachignon H. Cahard D. Chin. J. Chem. 2016; 34: 445
- 5f Sebastian B.-V. Sergio B. Al P. Org. Biomol. Chem. 2016; 14: 7150
- 5g Huang Z. Shibata N. New Horizons of Process Chemistry . Tomioka K. Shioiri T. Sajiki H. Springer Nature; Heidelberg: 2017: 63
- 6a Langlois BR. Laurent E. Roidot N. Tetrahedron Lett. 1991; 32: 7525
- 6b Langlois BR. Laurent E. Roidot N. Tetrahedron Lett. 1992; 33: 1291
- 6c Tommasino J.-B. Brondex A. Médebielle M. Thomalla M. Langlois BR. Billard T. Synlett 2002; 1697
- 7a Pan X. Xia H. Wu J. Org. Chem. Front. 2016; 3: 1163
- 7b Wang D. Deng G.-J. Chen S. Gong H. Green Chem. 2016; 18: 5967
- 7c Jin L.-K. Lu G.-P. Cai C. Org. Chem. Front. 2016; 3: 1309
- 7d Fu H. Wang S.-S. Li Y.-M. Adv. Synth. Catal. 2016; 358: 3616
- 7e Shen C. Xu J. Ying B. Zhang P. ChemCatChem 2016; 8: 3560
- 7f Chang B. Shao H. Yan P. Qiu W. Weng Z. Yuan R. ACS Sustainable Chem. Eng. 2017; 5: 334
- 7g Qin H.-T. Wu S.-W. Liu J.-L. Liu F. Chem. Commun. 2017; 53: 1696
- 7h Liu Z.-Q. Liu D. J. Org. Chem. 2017; 82: 1649
- 7i Wu Z. Wang D. Liu Y. Huan L. Zhu C. J. Am. Chem. Soc. 2017; 139: 1388
- 7j Li C. Suzuki K. Yamaguchi K. Mizuno N. New J. Chem. 2017; 41: 1417
- 7k Yang H.-B. Selander N. Org. Biomol. Chem. 2017; 15: 1771
- 7l Torviso MR. Mansilla D. Garcia S. Lantaño B. Barata-Vallejo S. Postigo A. J. Fluorine Chem. 2017; 197: 42
- 7m van der Werf A. Hribersek M. Selander N. Org. Lett. 2017; 19: 2374
- 7n Kong W. An H. Song Q. Chem. Commun. 2017; 53: 8968
- 7o Konik YA. Kudrjashova M. Konrad N. Kaabel S. Järving I. Lopp M. Kananovich DG. Org. Biomol. Chem. 2017; 15: 4635
- 7p Zhang H.-Y. Huo W. Ge C. Zhao J. Zhang Y. Synlett 2017; 28: 962
- 8a Cullen SC. Shekhar S. Nere NK. J. Org. Chem. 2013; 78: 12194
- 8b Chu X.-Q. Meng H. Xu X.-P. Ji S.-J. Chem. Eur. J. 2015; 21: 11359
- 8c Liao J. Guo W. Zhang Z. Tang X. Wu W. Jiang H. J. Org. Chem. 2016; 81: 1304
- 8d Smyth LA. Phillips EM. Chan VS. Napolitano JG. Henry R. Shekhar S. J. Org. Chem. 2016; 81: 1285
- 8e Han J.-B. Yang L. Chen X. Zha G.-F. Zhang C.-P. Adv. Synth. Catal. 2016; 358: 4119
- 9a Billard T. Greiner A. Langlois BR. Tetrahedron 1999; 55: 7243
- 9b Chen X. Tordeux M. Desmurs J.-R. Wakselman C. J. Fluorine Chem. 2003; 123: 51
- 9c Hasegawa A. Ishikawa T. Ishihara K. Yamamoto H. Bull. Chem. Soc. Jpn. 2005; 78: 1401
- 9d Magnier E. Blazejewski J.-C. Tordeux M. Wakselman C. Angew. Chem. Int. Ed. 2006; 45: 1279
- 9e Chachignon H. Cahard D. J. Fluorine Chem. 2017; 198: 82
- 10a Xu X.-H. Matsuzaki K. Shibata N. Chem. Rev. 2015; 115: 731
- 10b Barata-Vallejo S. Bonesi S. Postigo A. Org. Biomol. Chem. 2016; 14: 7150
- 10c Gadais C. Saraiva-Rosa N. Chelain E. Pytkowicz J. Brigaud T. Eur. J. Org. Chem. 2017; 246
- 10d Bu M.-J. Lu G.-P. Cai C. Org. Chem. Front. 2017; 4: 266
- 11 In our knowledge, there is no report for the introduction of OS(O)CF3 using CF3SO2Na.
- 12a Binkley RW. Ambrose MG. J. Org. Chem. 1983; 48: 1776
- 12b Miyamoto K. Iwasaki S. Doi R. Ota T. Kawano Y. Yamashita J. Sakai Y. Tada N. Ochiai M. Hayashi S. Nakanishi W. Uchiyama M. J. Org. Chem. 2016; 81: 3188
- 13 Suzuki S. Kamo T. Fukushi K. Hiramatsu T. Tokunaga T. Dohi T. Kita Y. Shibata N. Chem. Sci. 2014; 5: 2754
- 14 Xu X.-H. Shibata N. J. Synth. Org. Chem. Jpn. 2013; 71: 1195
- 15 Helena ML. Forrest EM. J. Am. Chem. Soc. 2010; 132: 1249
- 16 Wu T. Yin G. Liu G. J. Am. Chem. Soc. 2009; 131: 16354
- 17 Chen C. Chen P. Liu G. J. Am. Chem. Soc. 2015; 137: 15648
- 18 General Procedure To a stirring mixture of ω-aminoalkenes 1 (0.1 mmol), PIDA (64.2 mg, 0.2 mmol, 2.0 equiv), Pd(OAc)2 (2.2 mg, 0.01 mmol, 10 mol%), CF3SO2Na (78.0 mg, 0.5 mmol, 5.0 equiv), and PivOH (51.0 mg, 0.5 mmol, 5.0 equiv) in MeCN (0.5 mL, 0.2 M) at 10 °C, t BuOCl (10.9 mg, 11 μL, 0.1 mmol, 1.0 equiv) was added under nitrogen atmosphere. The mixture was stirred at room temperature for 15 h. The resulting mixture was cooled to 0 °C, quenched with sat. NaHCO3 aqueous solution, and extracted with EtOAc three times. The combined organic layer was washed with brine, dried with Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (benzene/EtOAc = 98:2) to give product 3. 5,5-Dimethyl-1-tosylpiperidin-3-yl Trifluoromethanesulfinate (3a) 60% yield (dr = 54:46, mixture of diastereoisomer at sulfur atom); white solid.1H NMR (300 MHz, CDCl3): δ = 7.64 (q, J = 3.2 Hz, 2 H), 7.36–7.33 (m, 2 H), 4.82–4.68 (m, 1 H), 4.00 (q, J = 5.4 Hz, 0.5 H), 3.85 (q, J = 5.4 Hz, 0.5 H), 3.28 (d, J = 11.5 Hz, 0.5 H), 3.20 (d, J = 11.5 Hz, 0.5 H), 2.44 (s, 3 H), 2.37–2.30 (m, 1 H), 2.18 (d, J = 11.5 Hz, 0.5 H), 2.10 (d, J = 11.5 Hz, 0.5 H), 1.87 (td, J = 12.1, 4.6 Hz, 1 H), 1.43–1.26 (m, 1 H), 1.11 (s, 1.5 H), 1.10 (s, 1.5 H), 1.01 (s, 1.5 H), 0.99 (s, 1.5 H). 19F NMR (282 MHz, CDCl3): δ = –80.0 (major, s), –80.2 (minor, s). 13C NMR (176 MHz, CDCl3): δ = 143.9, 133.2, 129.8, 127.4, 127.3, 122.5 (q, J = 336.9 Hz), 122.4 (q, J = 336.0 Hz), 56.4, 56.3, 50.1, 50.0, 43.8, 43.5, 32.4, 32.3, 28.0, 27.9, 26.9, 24.9, 24.7, 21.4. IR (KBr) 2962, 2928, 1470, 1346, 1196, 1159, 1129, 950, 907, 857, 677 cm–1. ESI-MS: m/z = 422 [M + Na]+. ESI-HRMS: m/z calcd for C15H20NO4F3NaS2: 422.0684; found: 422.0679.
- 19a Di J. Rajanikanth B. Szarek WA. J. Chem. Soc., Perkin Trans. 1 1992; 2151
- 19b Tschamber T. Siendt H. Boiron A. Gessier F. Deredas D. Frankowski A. Picasso S. Steiner H. Aubertin A.-M. Streith J. Eur. J. Org. Chem. 2001; 1335
- 19c Golubev AS. Schedel H. Radics G. Fioroni M. Thust S. Burger K. Tetrahedron Lett. 2004; 45: 1445
- 20 The 19F NMR (282 MHz) spectra of the mixture of CF3SO2Na (1.0 equiv), PivOH (1.0 equiv), and t BuOCl (1.0 equiv) in CD3CN indicated two singlet signals at δ = –74.01 ppm (CF3SO2Cl) and –77.14 ppm (7).
- 21 The19F NMR (282 MHz) spectra of the mixture of 6 (1.0 equiv) and CF3SO2Na (1.0 equiv) in CD3CN indicated three singlet signals at δ = –73.98 ppm (CF3SO2Cl), –77.14 ppm (7), and –83.00 ppm (CF3SO2Na).
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected recent articles, see:
For selected recent articles, see:
The direct introduction of OS(O)CF3unit is also rare. Two examples are reported: