Subscribe to RSS
DOI: 10.1055/s-0036-1591940
Arenophile-Mediated Dearomative Functionalization Strategies
We would like to acknowledge the University of Illinois, Petroleum Research Fund (PRF#57175-DNI1), the National Science Foundation (CAREER Award No. CHE-1654110), and the NIH/National Institute of General Medical Sciences (R01 GM122891) for the support. D.S. is an Alfred P. Sloan Fellow. M.O. acknowledges the Honjo International Scholarship Foundation.Publication History
Received: 11 January 2018
Accepted after revision: 22 January 2018
Publication Date:
19 February 2018 (online)
Abstract
The dearomatization of arenes is a fundamental synthetic strategy, providing a direct connection between simple hydrocarbons and valuable, more complex intermediates. While several strategies exist, the functionalization with concurrent introduction of functionality (i.e., dearomative functionalization) is still a largely underdeveloped field. This Synpacts article provides an overview and insights from our recent work in this area using small molecules—arenophiles.
1 Introduction
2 Arenophiles
3 Olefin-Like Dearomative Functionalizations
4 Arenophiles and Transition-Metal Catalysis
5 Applications in Natural Product Synthesis
6 Conclusion
-
References
- 1 Roche SP. Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
- 2 Rabideau PW. Marcinow Z. Org. React. 1992; 42: 1
- 3a Foubelo F. Yus M. Reduction/Hydrogenation of Aromatic Rings. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. John Wiley & Sons; Hoboken: 2015
- 3b Stanislaus A. Cooper BH. Catal. Rev. Sci. Eng. 1994; 36: 75
- 4 Pouységu L. Deffieux D. Quideau S. Tetrahedron 2010; 66: 2235
- 5 Pape AR. Kaliappan KP. Kündig EP. Chem. Rev. 2000; 100: 2917
- 6a Streit U. Bochet CG. Beilstein J. Org. Chem. 2011; 7: 525
- 6b Wender PA. Ternansky R. deLong M. Singh S. Olivero A. Rice K. Pure Appl. Chem. 1990; 62: 1597
- 8 Rice KC. J. Org. Chem. 1980; 45: 3135
- 9 Zutter U. Iding H. Spurr P. Wirz B. J. Org. Chem. 2008; 73: 4895
- 10 Hu Y. Li C. Kulkarni BA. Strobel G. Lobkovsky E. Torczynski RM. Porco JA. Org. Lett. 2001; 3: 1649
- 11a Kündig EP. Pape A. Top. Organomet. Chem. 2004; 7: 71
- 11b Keane JM. Harman WD. Organometallics 2005; 24: 1786
- 12 McCullough JJ. Chem. Rev. 1987; 87: 811
- 13 Kjell DP. Sheridan RS. J. Am. Chem. Soc. 1984; 106: 5368
- 14 Hamrock SJ. Sheridan RS. J. Am. Chem. Soc. 1989; 111: 9247
- 15 De Bruycker K. Billiet S. Houck HA. Chattopadhyay S. Winne JM. Du Prez FE. Chem. Rev. 2016; 116: 3919
- 16a Hamrock SJ. Sheridan RS. Tetrahedron Lett. 1988; 29: 5509
- 16b Kjell DP. Sheridan RS. J. Photochem. 1985; 28: 205
- 17 Breton GW. Newton KA. J. Org. Chem. 2000; 65: 2863
- 18 Southgate EH. Pospech J. Fu J. Holycross DR. Sarlah D. Nat. Chem. 2016; 8: 922
- 19 VanRheenen V. Kelly RC. Cha DY. Tetrahedron Lett. 1976; 17: 1973
- 20 Dupau P. Epple R. Thomas AA. Fokin VV. Sharpless KB. Adv. Synth. Catal. 2002; 344: 421
- 21 Okumura M. Nakamata Huynh SM. Pospech J. Sarlah D. Angew. Chem. Int. Ed. 2016; 55: 15910
- 22 Pasto DJ. Taylor RT. Org. React. 1991; 40: 91
- 23 Kornblum N. DeLaMare HE. J. Am. Chem. Soc. 1951; 73: 880
- 24 Hernandez LW. Pospech J. Klöckner U. Bingham TW. Sarlah D. J. Am. Chem. Soc. 2017; 139: 15656
- 25 Davies SG. Green ML. H. Mingos DM. P. Tetrahedron 1978; 34: 3047
- 26 Okumura M. Shved AS. Sarlah D. J. Am. Chem. Soc. 2017; 139: 17787
- 27a Lautens M. Fagnou K. Hiebert S. Acc. Chem. Res. 2003; 36: 48
- 27b Chiu P. Lautens M. Top. Curr. Chem. 1997; 190: 190
- 28 Adam W. Pastor A. Wirth T. Org. Lett. 2000; 2: 1295
- 29 Southgate EH. Holycross DR. Sarlah D. Angew. Chem. Int. Ed. 2017; 56: 15049
- 30a Iwasawa N. Kato T. Narasaka K. Chem. Lett. 1988; 17: 1721
- 30b Gypser A. Michel D. Nirschl DS. Sharpless KB. J. Org. Chem. 1998; 63: 7322
- 31 Tezuka N. Shimojo K. Hirano K. Komagawa S. Yoshida K. Wang C. Miyamoto K. Saito T. Takita R. Uchiyama M. J. Am. Chem. Soc. 2016; 138: 9166
- 32 Brunet J.-J. Sidot C. Caubere P. J. Org. Chem. 1983; 48: 1166