Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(11): 1415-1420
DOI: 10.1055/s-0036-1591958
DOI: 10.1055/s-0036-1591958
synpacts
Synthetic Transformations of Alkenyl MIDA Boronates toward the Efficient Construction of Organoborons
Generous financial support from the Key Project of Chinese National Programs for Fundamental Research and Development (2016YFA0602900), the National Natural Science Foundation of China (21472250), and the ‘1000-Youth Talents Plan’ is gratefully acknowledged.Further Information
Publication History
Received: 25 January 2018
Accepted after revision: 22 February 2018
Publication Date:
28 March 2018 (online)

Dedicated to Professor Lian-Quan Gu.
Abstract
The attachment of N-methyliminodiacetyl boron (MIDA boron) to alkenes leads to a new type of activated alkenes. Synthetic manipulation of the alkene double bond while retaining the boron moiety offers an unprecedented opportunity for the construction of organoborons. These reactions feature unique reactivity, good regioselectivity, and they can be used to access organoborons that are historically difficult to prepare. Herein, we give a brief summary of advances in the use of alkenyl MIDA boronates as starting materials for organoboron synthesis. Mechanisms are discussed where relevant.
-
References
- 1a Contemporary Boron Chemistry . Davidson MG. Hughes AK. Marder TB. Wade K. Royal Society of Chemistry; Cambridge: 2000
- 1b Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011. 2nd ed.
- 1c Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
- 2 Carrow BP. Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2116
- 3 Brown H. Rao BC. J. Org. Chem. 1957; 22: 1137
- 4 Petasis NA. Akritopoulou I. Tetrahedron Lett. 1993; 34: 583
- 5 Thomas SP. French RM. Jheengut V. Aggarwal VK. Chem. Rec. 2009; 9: 24
- 6a Darses S. Genet J.-P. Chem. Rev. 2008; 108: 288
- 6b Noguchi H. Hojo K. Suginome M. J. Am. Chem. Soc. 2007; 129: 758
- 7a Gillis EP. Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
- 7b Li J. Ballmer SG. Gillis EP. Fujii S. Schmidt MS. Palazzolo AM. E. Lehmann JW. Morehouse GF. Burke MD. Science 2015; 347: 1221
- 8a Lennox AJ. J. Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 8b Berionni G. Maji B. Knochel P. Mayr H. Chem. Sci. 2012; 3: 878
- 9 Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
- 10a Quiclet-Sire B. Zard SZ. J. Am. Chem. Soc. 2015; 137: 6762
- 10b Heinrich MR. Sharp LA. Zard SZ. Chem. Commun. 2005; 3077
- 11a Ibrahim MR. Bühl M. Knab R. Von Rague Schleyer P. J. Comput. Chem. 1992; 13: 423
- 11b Dang L. Lin Z. Organometallics 2008; 27: 4443
- 12a Kobayashi M. Sanda F. Endo T. Macromolecules 2002; 35: 346
- 12b Ansorge A. Brauer DJ. Bürger H. Hagen T. Pawelke G. J. Organomet. Chem. 1993; 444: 5
- 12c Li X. Curran DP. J. Am. Chem. Soc. 2013; 135: 12076
- 12d Cheng Q.-Q. Zhu S.-F. Zhang Y.-Z. Xie X.-L. Zhou Q.-L. J. Am. Chem. Soc. 2013; 135: 14094
- 12e Chen D. Zhang X. Qi W.-Y. Xu B. Xu M.-H. J. Am. Chem. Soc. 2015; 137: 5268
- 13 He Z. Yudin AK. J. Am. Chem. Soc. 2011; 133: 13770
- 14 Li J. Burke MD. J. Am. Chem. Soc. 2011; 133: 13774
- 15 Lv W.-X. Zeng Y.-F. Li Q. Chen Y. Tan D.-H. Yang L. Wang H. Angew. Chem. Int. Ed. 2016; 55: 10069
- 16a Scharnagl FK. Bose SK. Marder TB. Org. Biomol. Chem. 2017; 15: 1738
- 16b Noda H. Bode JW. Org. Biomol. Chem. 2016; 14: 16
- 16c St Denis JD. He Z. Yudin AK. ACS Catal. 2015; 5: 5373
- 17 Dumas AM. Molander GA. Bode JW. Angew. Chem. Int. Ed. 2012; 51: 5683
- 18 Taguchi J. Ikeda T. Takahashi R. Sasaki I. Ogasawara Y. Dairi T. Kato N. Yamamoto Y. Bode JW. Ito H. Angew. Chem. Int. Ed. 2017; 56: 13847
- 19 Lepage ML. Lai S. Peressin N. Hadjerci R. Patrick BO. Perrin DM. Angew. Chem. Int. Ed. 2017; 56: 15257
- 20 Lee CF. Holownia A. Bennett JM. Elkins JM. St Denis JD. Adachi S. Yudin AK. Angew. Chem. Int. Ed. 2017; 56: 6264
- 21 Khanizeman RN. Barde E. Bates RW. Guérinot A. Cossy J. Org. Lett. 2017; 19: 5046
- 22a Lhermet R. Ahmad M. Fressigné C. Silvi B. Durandetti M. Maddaluno J. Chem. Eur. J. 2014; 20: 10249
- 22b Satoh M. Miyaura N. Suzuki A. Chem. Lett. 1986; 1329
- 22c Xu S. Lee C.-T. Rao H. Negishi E.-i. Adv. Synth. Catal. 2011; 353: 2981
- 22d Cascia EL. Cuenca AB. Fernández E. Chem. Eur. J. 2016; 22: 18737
- 23 Zeng Y.-F. Ji W.-W. Lv W.-X. Chen Y. Tan D.-H. Li Q. Wang H. Angew. Chem. Int. Ed. 2017; 56: 14707
For selected examples, see: