RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(06): 764-768
DOI: 10.1055/s-0037-1609199
DOI: 10.1055/s-0037-1609199
cluster
Rh(I)-Catalyzed Intramolecular [3+2] Cycloaddition of trans-2-Allene-Vinylcyclopropanes
We thank the National Natural Science Foundation of China (21672008) for financial support.Weitere Informationen
Publikationsverlauf
Received: 13. November 2017
Accepted after revision: 09. Januar 2017
Publikationsdatum:
18. Januar 2018 (online)

Published as part of the Cluster C–C Activation
Abstract
An intramolecular [3+2] cycloaddition of trans-2-allene-vinylcyclopropanes for the synthesis of bicyclo[3.3.0]octane derivatives is developed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609199.
- Supporting Information
-
References and Notes
- 1a Rubin M. Rubina M. Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 1b Chen P.-h. Billett BA. Tsukamoto T. Dong G. ACS Catal. 2017; 7: 1340
- 1c Fumagalli G. Stanton S. Bower JF. Chem. Rev. 2017; 117: 9404
- 1d Nishiwaki N. Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Wiley-VCH; Hoboken: 2014
- 1e Kissane M. Maguire AR. Chem. Soc. Rev. 2010; 39: 845
- 2a Wilson JE. Fu GC. Angew. Chem. Int. Ed. 2006; 45: 1426
- 2b Wei Y. Shi M. Org. Chem. Front. 2017; 4: 1876
- 2c Trost BM. Stambuli JP. Silverman SM. Schwörer U. J. Am. Chem. Soc. 2006; 128: 13328
- 2d Trost BM. Cramer N. Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
- 2e Chang H.-T. Jayanth TT. Cheng C.-H. J. Am. Chem. Soc. 2007; 129: 4166
- 2f Huang X. Zhang L. J. Am. Chem. Soc. 2007; 129: 6398
- 2g Nishimura T. Yasuhara Y. Hayashi T. J. Am. Chem. Soc. 2007; 129: 7506
- 3a Liu L. Montgomery J. J. Am. Chem. Soc. 2006; 128: 5348
- 3b Lloyd-Jones GC. Angew. Chem. Int. Ed. 2006; 45: 6788
- 3c Ogoshi S. Nagata M. Kurosawa H. J. Am. Chem. Soc. 2006; 128: 5350
- 3d Liu L. Montgomery J. Org. Lett. 2007; 9: 3885
- 3e Tamaki T. Ohashi M. Ogoshi S. Angew. Chem. Int. Ed. 2011; 50: 12067
- 3f Liu Q.-S. Wang D.-Y. Yang Z.-J. Luan Y.-X. Yang J.-F. Li J.-F. Pu Y.-G. Ye M. J. Am. Chem. Soc. 2017; 139: 18150
- 4 Wender PA. Paxton TJ. Williams TJ. J. Am. Chem. Soc. 2006; 128: 14814
- 5a Lewis RT. Motherwell WB. Shipman M. J. Chem. Soc., Chem. Commun. 1988; 948
- 5b Bapuji SA. Motherwell WB. Shipman M. Tetrahedron Lett. 1989; 30: 7107
- 5c Motherwell WB. Shipman M. Tetrahedron Lett. 1991; 32: 1103
- 5d Lautens M. Ren Y. Delanghe PH. M. J. Am. Chem. Soc. 1994; 116: 8821
- 5e Lautens M. Ren Y. Delanghe P. Chiu P. Ma S. Colucci J. Can. J. Chem. 1995; 73: 1251
- 5f Lautens M. Ren Y. J. Am. Chem. Soc. 1996; 118: 9597
- 5g Lautens M. Ren Y. J. Am. Chem. Soc. 1996; 118: 10668
- 5h Oh BH. Nakamura I. Saito S. Yamamoto Y. Tetrahedron Lett. 2001; 42: 6203
- 6a Yao B. Li Y. Liang Z. Zhang Y. Org. Lett. 2011; 13: 640
- 6b Kuila B. Mahajan D. Singh P. Bhargava G. Tetrahedron Lett. 2015; 56: 1307
- 7a Shimizu I. Ohashi Y. Tsuji J. Tetrahedron Lett. 1985; 26: 3825
- 7b Goldberg AF. G. Stoltz BM. Org. Lett. 2011; 13: 4474
- 7c Trost BM. Morris PJ. Angew. Chem. Int. Ed. 2011; 50: 6167
- 7d Hiroi K. Yamada A. Tetrahedron: Asymmetry 2000; 11: 1835
- 7e Mei L.-y. Wei Y. Xu Q. Shi M. Organometallics 2012; 31: 7591
- 7f Trost BM. Morris PJ. Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
- 7g Halskov KS. Næsborg L. Tur F. Jørgensen KA. Org. Lett. 2016; 18: 2220
- 7h Tombe R. Iwamoto T. Kurahashi T. Matsubara S. Synlett 2014; 25: 2281
- 8a Jiao L. Ye S. Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 7178
- 8b Jiao L. Lin M. Yu Z.-X. Chem. Commun. 2010; 46: 1059
- 8c Li Q. Jiang G.-J. Jiao L. Yu Z.-X. Org. Lett. 2010; 12: 1332
- 8d Jiao L. Lin M. Yu Z.-X. J. Am. Chem. Soc. 2011; 133: 447
- 8e Lin M. Kang G.-Y. Guo Y.-A. Yu Z.-X. J. Am. Chem. Soc. 2012; 134: 398
- 8f Jiao L. Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 9a Lin T.-Y. Zhu C.-Z. Zhang P. Wang Y. Wu H.-H. Feng J.-J. Zhang J. Angew. Chem. Int. Ed. 2016; 55: 10844
- 9b Feng J.-J. Lin TY. Zhu CZ. Wang H. Wu H.-H. Zhang J. J. Am. Chem. Soc. 2016; 138: 2178
- 10 Yu Z.-X. Cheong PH.-Y. Liu P. Legault CY. Wender PA. Houk KN. J. Am. Chem. Soc. 2008; 130: 2378
- 11 Liu C.-H. Yu Z.-X. Angew. Chem. Int. Ed. 2017; 56: 8667
- 12 Rh(CO)(PMe3)2Cl was synthesized according to the following report: Slough GA. Bergman RG. Heathcock CH. J. Am. Chem. Soc. 1989; 111: 938
- 13 CCDC 1562354 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14 Intramolecular [3+2] Cycloaddition; Typical ProcedureTo a mixture of Rh(CO)(PMe3)2Cl (3.2 mg, 0.01 mmol, 5 mol%) and AgOTf (2.6 mg, 0.01 mmol, 5 mol%) was added DCE (2 mL) and the mixture was stirred at room temperature under argon for 5 min. A solution of 1a (0.2 mmol) in DCE (2 mL) was added at room temperature, and the resulting solution was immersed into a preheated oil bath and stirred at 80 °C. After 20 h, the reaction mixture was cooled to room temperature and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the [3+2] cycloadduct 2a. Run 1: 1a (67.5 mg) was converted into 2a (49.8 mg), yield 74%. Run 2: 1a (66.7 mg) was converted into 2a (48.1 mg), yield 72%. So, the average yield of two runs was 73%; white solid; mp 99–102 °C; Rf = 0.59 (PE/EtOAc, 5:1); 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 8.2 Hz, 2 H), 7.33 (d, J = 8.2 Hz, 2 H), 5.65 (ddd, J = 17.0, 10.2, 6.3 Hz, 1 H), 4.90 (m, 1 H), 4.83 (m, 1 H), 3.53–3.43 (m, 1 H), 3.34–3.25 (m, 1 H), 3.24–3.14 (m, 2 H), 3.14–3.05 (m, 1 H), 2.95 (dd, J = 9.5, 7.3 Hz, 1 H), 2.71–2.58 (m, 1 H), 2.44 (s, 3 H), 1.69 (dd, J = 12.5, 6.9 Hz, 1 H), 1.62 (s, 3 H), 1.58 (s, 3 H), 1.56–1.48 (m, 1 H); 13C NMR (101 MHz, CDCl3): δ = 143.3, 139.7 (+), 138.1, 133.2, 129.5 (+, 2 C), 127.6 (+, 2 C), 127.4, 112.9 (–), 52.8 (–), 52.2 (–), 47.1 (+), 45.8 (+), 41.7 (+), 36.8 (–), 22.0 (+), 21.5 (+), 21.0 (+), DEPT explanation in SI. HRMS (ESI): m/z [M + H]+ calcd for C19H26NO2S: 332.1679; found: 332.1670.
- 15 A rationalization of [3+2] and [5+2] cycloadditions has been given in our previous publication, see Ref. 8a.
- 16a Lee D.-Y. Kim I.-J. Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
- 16b Xu G. Renaud P. Angew. Chem. Int. Ed. 2016; 55: 3657
- 16c Trost BM. Hansmann MM. Thaisrivongs DA. Angew. Chem. Int. Ed. 2012; 51: 4950
- 16d Armesto D. Ortiz MJ. Agarrabeitia AR. Martin-Fontecha M. El-Boulifi N. Duran-Sampedro G. Enma D. Org. Lett. 2009; 11: 4148
- 16e Eilbracht P. Balß E. Acker M. Chem. Ber. 1985; 118: 825
Reviews involving the construction of five-membered rings:
Selected examples of [3+2] cycloadditions:
Examples of VCPs that contain strong electron-withdrawing groups:
[3+2] Cycloaddition of VCPs:
[3+2] Cycloaddition of vinyl aziridines: