Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(05): 605-609
DOI: 10.1055/s-0037-1612077
DOI: 10.1055/s-0037-1612077
letter
One-Pot Sequential Multistep Transformation of α,β-Unsaturated Trifluoromethyl Ketones: Facile Synthesis of Trifluoromethylated 2-Pyridones
This work was supported financially by the National Natural Science Foundation of China (No. 21472137, 21532008, and 21772142) and the National Basic Research Program of China (973 Program: 2014CB745100).
Further Information
Publication History
Received: 16 October 2018
Accepted after revision: 21 December 2018
Publication Date:
23 January 2019 (online)
Abstract
A one-pot transformation of α,β-unsaturated trifluoromethyl ketones with 2-(phenylsulfinyl)acetamide to give trifluoromethylated 2-pyridones is realized. The reaction proceeds under mild conditions and involves multiple steps in an expeditious and controlled sequence to provide efficient access to a broad range of trifluoromethylated 2-pyridones in moderate to high yields. Moreover, further synthetic manipulations permit the routine synthesis of a diverse array of trifluoromethylated pyridines with good efficiency.
Key words
trifluoromethyl group - pyridones - trifluoromethylpyridines - one-pot synthesis - multistep reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612077.
- Supporting Information
-
References and Notes
- 1a Chu DT. W. Med. Res. Rev. 1999; 19: 497
- 1b Torres M, Gil S, Parra M. Curr. Org. Chem. 2005; 9: 1757
- 1c Hamama WS, Waly M, El-Hawary I, Zoorob HH. Synth. Commun. 2014; 44: 1730
- 1d Vodolazhenko MA, Gorobets NY. Chem. Heterocycl. Compd. 2016; 52: 894
- 1e Hirano K, Miura M. Chem. Sci. 2018; 9: 22
- 1f Prendergast AM, McGlacken GP. Eur. J. Org. Chem. 2018; 6068
- 2a Xiong W.-N, Yang C.-G, Jiang B. Bioorg. Med. Chem. 2001; 9: 1773
- 2b Huffman JW, Lu J, Hynd G, Wiley JL, Martin BR. Bioorg. Med. Chem. 2001; 9: 2863
- 2c Surup F, Wagner O, von Frieling J, Schleicher M, Oess S, Müller P, Grond S. J. Org. Chem. 2007; 72: 5085
- 2d Gan C.-Y, Low Y.-Y, Etoh T, Hayashi M, Komiyama K, Kam T.-S. J. Nat. Prod. 2009; 72: 2098
- 2e Jessen HJ, Gademann K. Nat. Prod. Rep. 2010; 27: 1168
- 2f Hibi S, Ueno K, Nagato S, Kawano K, Ito K, Norimine Y, Takenaka O, Hanada T, Yonaga M. J. Med. Chem. 2012; 55: 10584
- 2g Chen J, Lu M.-M, Liu B, Chen Z, Li Q.-B, Tao L.-J, Hu G.-Y. Bioorg. Med. Chem. Lett. 2012; 22: 2300
- 2h Scott JS, Goldberg SW, Turnbull AV. J. Med. Chem. 2014; 57: 4466
- 2i Neckles C, Pschibul A, Lai C.-T, Hirschbeck M, Kuper J, Davoodi S, Zou J, Liu N, Pan P, Shah S, Daryaee F, Bommineni GR, Lai C, Simmerling C, Kisker C, Tonge PJ. Biochemistry 2016; 55: 2992
- 3a Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
- 3b Zhu R.-Y, Li Z.-Q, Park HS, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 3564
- 3c Pati TK, Debnath S, Kundu M, Khamrai U, Maiti DK. Org. Lett. 2018; 20: 4062
- 4 For selected examples in biomaterials, see: Matsuo K, Nishikawa Y, Masuda M, Hamachi I. Angew. Chem. Int. Ed. 2018; 57: 659
- 5a Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
- 5b Nakao Y, Idei H, Kanyiva KS, Hiyama T. J. Am. Chem. Soc. 2009; 131: 15996
- 5c Hill MD. Chem. Eur. J. 2010; 16: 12052
- 5d Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 5e Allais C, Grassot JM, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
- 5f Li C, Kähny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
- 5g Zhang X, Yang Z.-P, Huang L, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 1873
- 5h Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
- 6a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 6b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 6c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 6d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 6e Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
- 6f Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 6g Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 7a Zhu S, Song L, Jin G, Dai B, Hao J. Curr. Org. Chem. 2009; 13: 1015
- 7b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 7c Barata-Vallejo S, Lantaño B, Postigo A. Chem. Eur. J. 2014; 20: 16806
- 7d Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 7e Li S, Ma J.-A. Chem. Soc. Rev. 2015; 44: 7439
- 7f Meyer F. Chem. Commun. 2016; 52: 3077
- 7g Das P, Tokunaga E, Shibata N. Tetrahedron Lett. 2017; 58: 4803
- 7h Feraldi-Xypolia A, Gomez Pardo D, Cossy J. Eur. J. Org. Chem. 2018; 3541
- 8a Pitman-Dunn SP. J. Heterocycl. Chem. 1969; 6: 223
- 8b Kvita V. Synthesis 1991; 883
- 8c Kumar GS, Kurumurthy C, Rao PS, Veeraswamy B, Rao PS, Narsaiah B. J. Heterocycl. Chem. 2015; 52: 75
- 8d Abdellattif MH, Maghrabi IA, Areef MM. H, ElDeab HA, Mouneir SM, Belal A. J. Adv. Chem. 2016; 12: 4351 ; DOI: 10.24297/jac.v12i4.2175
- 9 Zhang H.-H, Shen W, Lu L. Tetrahedron Lett. 2018; 59: 1042
- 10 Bai D, Wang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2018; 57: 6633
- 11 There is only one report on the synthesis of 6-(trifluoromethyl)-2-pyridones; this gives only one example, and requires two synthetic steps: Yeh P.-P, Daniels DS. B, Cordes DB, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 964
- 12 Fujii M, Nishimura T, Koshiba T, Yokoshima S, Fukuyama T. Org. Lett. 2013; 15: 232
- 13 In Fukuyama’s study, the reaction did not proceed at all in the absence of LiCl, and the use of KCl instead of LiCl resulted in no production of the 2-pyridone; for details, see ref. 12.
- 14 6-(Trifluoromethyl)-2-pyridones 3a–r; General Procedure DBU (0.6 mmol, 89.7 μL) and the appropriate α,β-unsaturated trifluoromethyl ketone 2 (0.2 mmol, 1.0 equiv) were added to a mixture of 2-(phenylsulfinyl)acetamide (1; 0.4 mmol, 73.3 mg) and LiCl (0.6 mmol, 25.4 mg) in MeCN (4 mL) at r.t., and the mixture was stirred at r.t. for 4 h. When the trifluoromethyl ketone 2 was completely consumed (TLC), AcOH (1 mmol, 57.2 μL) was added, and the resulting mixture was refluxed for 10 h, then cooled to r.t. The reaction was then quenched with sat. aq NaHCO3 and extracted with 10% MeOH–CHCl3 (×3). The combined organic extracts were washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, CH2Cl2–MeOH (80:1)]. 4-Phenyl-6-(trifluoromethyl)pyridin-2(1H)-one (3a) White solid; yield: 77.5 mg (81.0%); mp 198.4–200.6 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.83 (s, 1 H), 7.86–7.81 (m, 2 H), 7.61 (s, 1 H), 7.51 (dd, J = 5.8, 4.6 Hz, 3 H), 7.21 (s, 1 H). 19F NMR (376 MHz, DMSO-d 6): δ = –66.65 (s). 13C NMR (101 MHz, DMSO-d 6): δ = 164.9, 152.2, 144.8 (q, J C–F = 34.6 Hz), 136.2, 129.8, 129.2, 127.1, 121.5 (q, J C–F = 272.4 Hz), 110.8, 110.3. 4-(2-Tolyl)-6-(trifluoromethyl)pyridin-2(1H)-one (3b) White solid; yield: 81.0 mg (80.0%); mp 98.7–99.9 °C. IR (neat): 1666, 1632, 1550, 1444, 1403, 1348, 1174, 1133, 965, 945, 840 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 11.85 (s, 1 H), 7.27 (d, J = 25.6 Hz, 5 H), 6.86 (s, 1 H), 2.23 (s, 3 H). 19F NMR (377 MHz, DMSO-d 6): δ = –66.78 (s). 13C NMR (101 MHz, DMSO-d 6): δ = 164.4 (s), 153.8 (s), 144.1 (q, J C–F = 33.82 Hz), 137.8 (s), 134.7 (s), 130.7 (s), 129.0 (s), 128.8 (s), 126.2 (s), 121.5 (q, J C–F = 272.33 Hz), 113.9 (s), 113.0 (s), 19.8 (s). HRMS (ESI): m/z [M + H]+ calcd for C13H11F3NO: 254.0789; found: 254.0793.
- 15a Tsuchida N, Yamabe S. J. Phys. Chem. A 2005; 109: 1974
- 15b Mertens MD, Pietsch M, Schakenburg G, Gütschow M. J. Org. Chem. 2013; 78: 8966
- 15c Feng B, Li Y, Li H, Zhang X, Xie H, Cao H, Yu L, Xu Q. J. Org. Chem. 2018; 83: 6769
- 16a Cacchi S, Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1986; 27: 5541
- 16b Yoshida Y, Mohri K, Isobe K, Itoh T, Yamamoto K. J. Org. Chem. 2009; 74: 6010
- 17a Bhayana B, Fors BP, Buchwald SL. Org. Lett. 2009; 11: 3954
- 17b Gøgsig TM, Lindhardt AT, Skrydstrup T. Org. Lett. 2009; 11: 4886
- 18 Volochnyuk DM, Pushechnikov AO, Krotko DG, Sibgatulin DA, Kovalyova SA, Tolmachev AA. Synthesis 2003; 1531
- 19 Kumar GS, Dev GJ, Kumar NR, Swaroop DK, Chandra YP, Kumar CG, Narsaiah B. Chem. Pharm. Bull. 2015; 63: 584
- 20a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 20b Prachayasittikul S, Pingaew R, Worachartcheewan A, Sinthupoom N, Prachayasittikul V, Ruchirawat S, Prachayasittikul V. Mini-Rev. Med. Chem. 2017; 17: 869
- 20c Burriss A, Edmunds AJ. F, Emery D, Hall RG, Jacob O, Schaetzer J. Pest Manag. Sci. 2018; 74: 1228
- 21 Stark DG, Morrill LC, Yeh P.-P, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Angew. Chem. Int. Ed. 2013; 52: 11642
- 22 The presence of a double bond at the α-position of the alcohol cannot be ruled out at this stage.
For reviews, see:
For selected examples in bioactive molecules, see:
For selected examples in ligands, see:
For selected reviews, see: