Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(06): 595-599
DOI: 10.1055/s-0039-1690160
DOI: 10.1055/s-0039-1690160
cluster
Magnesium-Catalyzed N2-Regioselective Alkylation of 3-Substituted Pyrazoles
Further Information
Publication History
Received: 18 June 2019
Accepted after revision: 26 July 2019
Publication Date:
09 August 2019 (online)
Published as part of the ISySyCat2019 Special Issue
Abstract
A highly regioselective Mg-catalyzed alkylation of 3-substituted pyrazoles has been developed to provide N2-alkylated regioisomers. Using α-bromoacetates and acetamides as alkylating agents, this new method was applied to a variety of 3-substituted and 3,4-disubstituted pyrazoles to produce the N2-alkylated products with high regioselectivities ranging from 76:24 to 99:1 and 44–90% yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690160.
- Supporting Information
-
References and Notes
- 1a Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, Li M, Galya L, Metcalf B, Yue T-Y, Liu P, Zhou J. Org. Lett. 2009; 11: 1999
- 1b Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung P.-P, Pairish M, Jia L, Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zhou H, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP. J. Med. Chem. 2011; 54: 6342
- 2a Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Weenhuizen AW, Zhang YY, Isakson PC. J. Med. Chem. 1997; 40: 1347
- 2b Raulf M, Koenig W. Immunopharmacology 1990; 19: 103
- 3 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles, 3rd ed. Wiley-VCH; Weinheim: 2013
- 4 Huang A, Wo K, Lee SY. C, Kneitschel N, Chang J, Zhu K, Mello T, Bancroft L, Norman NJ, Zheng S.-L. J. Org. Chem. 2017; 82: 8864
- 5 Wright SW, Arnold EP, Yang X. Tetrahedron Lett. 2018; 59: 402
- 6 Chen S, Graceffa RF, Boezio AA. Org. Lett. 2016; 18: 16
- 7 Anhydrous Lewis acid catalysts were used. No conversion was observed with addition of 100 mol% water.
- 8 The impact of the Mg counterions on regioselectivity and yield were also tested (see Supporting Information, Table S1). Although the N2 isomer was formed selectively in all cases, catalysts with less dissociating counterions9 provided superior regioselectivity. MgBr2 provided the best compromise between yield and regioselectivity and was thus selected as the catalyst of choice.
- 9 Evans DA, Tedrow JS, Shaw JT, Downey W. J. Am. Chem. Soc. 2002; 124: 392
- 10 Alkylation side products of DBU and Et3N with 2-bromo-N,N-dimethylacetamide were observed by LC-MS.
- 11 Representative Procedure (Conditions A)In a glovebox filled with N2 (≤0.1 ppm O2, ≤0.1 ppm H2O) were charged 3-phenyl-1H-pyrazole (200 mg, 1.39 mmol, 100 mol%) and MgBr2 (51.0 mg, 0.277 mmol, 20 mol%) into a vial equipped with a magnetic stir bar. THF (3.00 mL) and 2-bromo-N,N-dimethylacetamide (461 mg, 2.77 mmol, 200 mol%) were then added. i-Pr2NEt (377 mg, 2.91 mmol, 210 mol%) was added to the solution dropwise at 25 °C. The resulting mixture was stirred at 25 °C for 2 h. The reaction was quenched with saturated NH4Cl in MeOH (2 mL), and the resulting solution was concentrated to dryness. Water (1 mL) was then added to the residue which was extracted with i-PrOAc (4 × 1 mL). The crude product was loaded on to silica gel column and eluted with heptane/i-PrOAc to give compound 2-N2 (239 mg, 75% yield as a white solid. 1H NMR (400 MHz, CDCl3): δ = 7.59 (s, 1 H), 7.51–7.34 (m, 5 H), 6.34 (s, 1 H), 4.93 (s, 2 H), 2.98 (d, J = 8.0 Hz, 7 H). 13C NMR (101 MHz, CDCl3): δ = 167.03, 145.02, 139.73, 130.78, 129.13, 128.81, 128.77, 106.43, 50.94, 36.65, 36.05. HRMS: m/z calcd for C13H16N3O [M + H]+: 230.1288; found: 230.1287.
- 12 Some strongly electron-deficient pyrazoles like 3a led to over-alkylated products. The side reaction was minimized by performing the reaction at 0 °C (Figure 2).
- 13 Using 20 mol% MgBr2, 3f-N2 and 3g-N2 were formed in regioselectivities of 89:11 (53% conversion) and 79:21 (100% conversion), respectively.