Subscribe to RSS
DOI: 10.1055/s-0039-1690192
Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines
We acknowledge financial support from the “1000-Youth Talents Program” (YJ201702), National Natural Science Foundation of China (No. 21702139) and Fundamental Research Funds for the Central Universities.Publication History
Received: 23 July 2019
Accepted after revision: 12 August 2019
Publication Date:
27 August 2019 (online)

† These authors contributed equally to this work.
Abstract
Over the past decades, phase-transfer catalysis (PTC), generally based on numerous chiral quaternary ammonium salts, has been recognized as a powerful and versatile tool for organic synthesis in both industry and academia. In sharp contrast, PTC involving chiral phosphonium salts as the catalysts is insufficiently developed. Recently, our group realized the first enantioselective aza-Darzens reaction for preparing tri- and tetrasubstituted aziridine derivatives under bifunctional phosphonium salt catalysis. This article briefly discusses the recent development in asymmetric reactions (mainly including nucleophilic additions and cyclizations) promoted by chiral quaternary phosphonium salt catalysts. We expect that more catalytic asymmetric reactions will be developed on the basis of such new phase-transfer catalytic systems in the near future.
-
References
- 1a Dehmlow EV, Dehmlow SS. Phase Transfer Catalysis, 3rd ed. Wiley-VCH; Weinheim: 1993
- 1b Nelson A. Angew. Chem. Int. Ed. 1999; 38: 1583
- 1c O’Donnell MJ. Acc. Chem. Res. 2004; 37: 506
- 1d Lygo B, Andrews BI. Acc. Chem. Res. 2004; 37: 518
- 1e Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
- 1f Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 1g Jew S.-s, Park H.-g. Chem. Commun. 2009; 7090
- 1h Liu Y, Provencher BA, Bartelson KJ, Deng L. Chem. Sci. 2011; 2: 1301
- 2a Werner T. Adv. Synth. Catal. 2009; 351: 1469
- 2b Liu S, Kumatabara Y, Shirakawa S. Green Chem. 2016; 18: 331
- 2c Golandaj A, Ahmad A, Ramjugernath D. Adv. Synth. Catal. 2017; 359: 3676
- 2d Selva M, Noè M, Perosa A, Gottardo M. Org. Biomol. Chem. 2012; 10: 6569
- 4 Shioiri T, Ando A, Masui M, Miura T, Tatematsu T, Bohsako A, Higashiyama M, Asakura C. ACS Symp. Ser. 1997; 659: 136
- 5 Dobrota C, Duraud A, Toffano M, Fiaud J.-C. Eur. J. Org. Chem. 2008; 2439
- 6 Abraham CJ, Paull DH, Dogo-Isonagie C, Lectka T. Synlett 2009; 1651
- 7a Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc. 2007; 129: 12392
- 7b Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc. 2008; 130: 14088
- 7c Uraguchi D, Nakashima D, Ooi T. J. Am. Chem. Soc. 2009; 131: 7242
- 7d Uraguchi D, Ito T, Ooi T. J. Am. Chem. Soc. 2009; 131: 3836
- 7e Uraguchi D, Asai Y, Ooi T. Angew. Chem. Int. Ed. 2009; 48: 733
- 7f Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
- 8a Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
- 8b Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
- 8c Ooi T, Miki T, Taniguchi M, Shiraishi M, Takeuchi M, Maruoka K. Angew. Chem. Int. Ed. 2003; 42: 3796
- 8d Kitamura M, Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 1549
- 8e Kano T, Hayashi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 7134
- 8f Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat. Chem. 2013; 5: 240
- 9a He R, Wang X, Hashimoto T, Maruoka K. Angew. Chem. Int. Ed. 2008; 47: 9466
- 9b He R, Ding C, Maruoka K. Angew. Chem. Int. Ed. 2009; 48: 4559
- 9c He R, Maruoka K. Synthesis 2009; 13: 2289
- 9d Abraham CJ, Paull DH, Dogo-Isonagie C, Lectka T. Synlett 2009; 1651
- 9e Shirakawa S, Kasai A, Tokuda T, Maruoka K. Chem. Sci. 2013; 4: 2248
- 9f Shirakawa S, Koga K, Tokuda T, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
- 10a Zhu C.-L, Zhang F.-G, Meng W, Nie J, Cahard D, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 5869
- 10b Zhu C.-L, Fu X.-Y, Wei A.-J, Cahard D, Ma J.-A. J. Fluorine Chem. 2013; 150: 60
- 11a Cao D, Chai Z, Zhang J, Ye Z, Xiao H, Wang H, Chen J, Wu X, Zhao G. Chem. Commun. 2013; 49: 5972
- 11b Wu X, Liu Q, Liu Y, Wang Q, Zhang Y, Chen J, Cao W, Zhao G. Adv. Synth. Catal. 2013; 355: 2701
- 11c Cao D, Zhang J, Wang H, Zhao G. Chem. Eur. J. 2015; 21: 9998
- 11d Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
- 11e Cao D, Fang G, Zhang J, Wang H, Zheng C, Zhao G. J. Org. Chem. 2016; 81: 9973
- 11f Wang H, Wang K, Ren Y, Li N, Tang B, Zhao G. Adv. Synth. Catal. 2017; 359: 1819
- 11g Xia X, Zhu Q, Wang J, Chen J, Cao W, Zhu B, Wu X. J. Org. Chem. 2018; 83: 14617
- 12a Zhong F, Dou X, Han X, Yao W, Zhu Q, Meng Y, Lu Y. Angew. Chem. Int. Ed. 2013; 52: 943
- 12b Wen S, Li X, Lu Y. Asian J. Org. Chem. 2016; 5: 1457
- 12c Wang T, Han X, Zhong F, Yao W, Lu Y. Acc. Chem. Res. 2016; 49: 1369
- 12d Ni H, Chan W.-L, Lu Y. Chem. Rev. 2018; 118: 9344
- 13a Wang T, Yu Z, Hoon DL, Phee CY, Lan Y, Lu Y. J. Am. Chem. Soc. 2016; 138: 265
- 13b Wang T, Yu Z, Hoon DL, Huang K.-W, Lan Y, Lu Y. Chem. Sci. 2015; 6: 4912
- 13c Wang T, Yao W, Zhong F, Pang GH, Lu Y. Angew. Chem. Int. Ed. 2014; 53: 2964
- 13d Wang T, Hoon DL, Lu Y. Chem. Commun. 2015; 51: 10186
- 14 Pan J, Wu J.-H, Zhang H, Ren X, Tan J.-P, Zhu L, Zhang H, Jiang C, Wang T. Angew. Chem. Int. Ed. 2019; 58: 7425
For selected reviews, see:
For asymmetric Darzens reactions with a phase-transfer catalyst, see:
For recent reviews, see:
For the pioneering work of Ooi, see:
For selected examples on binaphthyl-modified tetraalkylammonium salt-catalyzed asymmetric reactions, see:
For the pioneering work of Maruoka, see:
For selected examples on phosphonium salt-catalyzed asymmetric reactions by Zhao, see:
For selected examples on amino-acid-derived bifunctional phosphine catalysis, see: