Synlett 2019; 30(19): 2101-2106
DOI: 10.1055/s-0039-1690192
synpacts
© Georg Thieme Verlag Stuttgart · New York

Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines

Jia-Hong Wu †
,
Jianke Pan †
,
Tianli Wang
We acknowledge financial support from the “1000-Youth Talents Program” (YJ201702), National Natural Science Foundation of China (No. 21702139) and Fundamental Research Funds for the Central Universities.
Further Information

Publication History

Received: 23 July 2019

Accepted after revision: 12 August 2019

Publication Date:
27 August 2019 (online)


† These authors contributed equally to this work.

Abstract

Over the past decades, phase-transfer catalysis (PTC), generally based on numerous chiral quaternary ammonium salts, has been recognized as a powerful and versatile tool for organic synthesis in both industry and academia. In sharp contrast, PTC involving chiral phosphonium salts as the catalysts is insufficiently developed. Recently, our group realized the first enantioselective aza-Darzens reaction for preparing tri- and tetrasubstituted aziridine derivatives under bifunctional phosphonium salt catalysis. This article briefly discusses the recent development in asymmetric reactions (mainly including nucleophilic additions and cyclizations) promoted by chiral quaternary phosphonium salt catalysts. We expect that more catalytic asymmetric reactions will be developed on the basis of such new phase-transfer catalytic systems in the near future.