Subscribe to RSS
DOI: 10.1055/s-0039-1690498
Emerging Catalyst Control in Cobalt-Catalyzed Oxidative Hydrofunctionalization Reactions
This work was supported by the ‘Thousand Talents Plan’ Youth Program, and startup fund from College of Chemistry and Molecular Engineering, Peking University and BNLMS.Publication History
Received: 18 June 2019
Accepted after revision: 09 July 2019
Publication Date:
25 July 2019 (online)
Abstract
Oxidative functionalization has emerged as an important pathway in Co-catalyzed hydrogen atom transfer (HAT) hydrofunctionalization reactions. Notably, evidence was found for the participation of organometallic intermediates in such radical-polar crossover processes. These findings provide opportunities for catalyst control that was previously absent in HAT catalysis. In this article, we summarize the recent progress towards this direction involving carbon–heteroatom bond-forming intra- and intermolecular reactions, including work from our own group.
1 Introduction
2 Oxidative Trapping by Solvents and Intramolecular Nucleophiles
3 Intermolecular Oxidative Hydrofunctionalization
4 Conclusion and Outlook
-
References
- 1 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 3 For an excellent review, see: Crossley SW, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 4a Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
- 4b Li G, Han A, Pulling ME, Estes DP, Norton JR. J. Am. Chem. Soc. 2012; 134: 14662
- 4c Eisenberg DC, Norton JR. Isr. J. Chem. 1991; 31: 55
- 5a Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
- 5b Kato K, Mukaiyama T. Chem. Lett. 1990; 19: 1395
- 5c Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
- 5d Waser J, Carreira EM. J. Am. Chem. Soc. 2004; 126: 5676
- 5e Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
- 5f Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 5758
- 6a Hoffmann RW. Chem. Soc. Rev. 2016; 45: 577 ; see also ref. 3
- 6b Ma X, Herzon SB. Beilstein J. Org. Chem. 2018; 14: 2259
- 6c Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
- 6d Crossley SW, Barabe F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
- 7a Demarteau J, Debuigne A, Detrembleur C. Chem. Rev. 2019; 119: 6906
- 7b Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 8a Huang X, Meggers E. Acc. Chem. Res. 2019; 52: 833
- 8b Chen B, Fang C, Liu P, Ready JM. Angew. Chem. Int. Ed. 2017; 56: 8780
- 10a Zhu X, Chiba S. Chem. Soc. Rev. 2016; 45: 4504
- 10b Peacock DM, Roos CB, Hartwig JF. ACS Cent. Sci. 2016; 2: 647
- 10c Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
- 11a Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
- 11b Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
- 11c Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
- 11d Lin JS, Dong XY, Li TT, Jiang NC, Tan B, Liu XY. J. Am. Chem. Soc. 2016; 138: 9357
- 11e Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
- 12a Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
- 12b Shigehisa H, Kikuchi H, Hiroya K. Chem. Pharm. Bull. 2016; 64: 371
- 13a Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
- 13b Shigehisa H, Ano T, Honma H, Ebisawa K, Hiroya K. Org. Lett. 2016; 18: 3622
- 13c Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
- 13d Shigehisa H. Chem. Pharm. Bull. 2018; 66: 339
- 13e Shigehisa H, Nishi E, Fujisawa M, Hiroya K. Org. Lett. 2013; 15: 5158
- 14 Shepard SM, Diaconescu PL. Organometallics 2016; 35: 2446
- 15a Green SA, Matos JL. M, Yagi A, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
- 15b Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
- 15c Matos JL. M, Vasquez-Cespedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
- 15d Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
- 16 Touney EE, Foy NJ, Pronin SV. J. Am. Chem. Soc. 2018; 140: 16982
- 17a Magnuson RH, Halpern J, Levitin IY, Vol’pin ME. J. Chem. Soc., Chem. Commun. 1978; 44
- 17b Vol’pin ME, Levitin IY, Sigan AL, Halpern J, Tom GM. Inorg. Chim. Acta 1980; 41: 271
- 17c Halpern J. Angew. Chem. Int. Ed. 1985; 24: 274
- 18 Zhou X.-L, Yang F, Sun H.-L, Yin Y.-N, Ye W.-T, Zhu R. J. Am. Chem. Soc. 2019; 141: 7250
- 19a Brand JP, Fernandez Gonzalez D, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
- 19b Mahoney WL, Hermodson A. Biochemistry 1979; 18: 381
- 20 Vol’pin ME, Levitin IY, Sigan AL, Nikitaev AT. J. Organomet. Chem. 1985; 279: 263
- 21 Quote from ref. 6a.
For representative recent examples of related processes:
For representative examples of metal-complexed radicalophiles:
Selected examples:
Selected examples:
For a related radical hydrofluorination reaction:
Compound 31, 1-hydroxy-1,2-benziodoxol-3(1H)-one (or iodosobenzoic acid, IBA) is a well-known group-transferring oxidant:
For an example of early use: