Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1637-1641
DOI: 10.1055/s-0039-1690872
DOI: 10.1055/s-0039-1690872
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed Favorskii-Type Rearrangement of Cyclobutanone Oxime Esters to Cyclopropanecarbonitriles
This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB20000000), National Natural Science Foundation of China (Grants 21572245, 21772220, 21821002, and 91956112), and Science and Technology Commission of Shanghai Municipality (Grant 17JC1401200, 18JC1415600)

Abstract
A nickel-catalyzed base-promoted rearrangement of cyclobutanone oxime esters to cyclopropanecarbonitriles was developed. The ring opening of cyclobutanone oxime esters occurs at the sterically less hindered side. A base-promoted nickelacyclobutane intermediate, formed in situ, is assumed to be involved in the formation of the product.
Key words
nickel catalysis - cyclobutanone oxime esters - cyclopropanecarbonitriles - ring opening - Favorskii rearrangementSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690872.
- Supporting Information
Publication History
Received: 14 January 2020
Accepted: 09 March 2020
Article published online:
30 March 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
- 1b Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 1c Dermenci A, Coe JW, Dong G. Org. Chem. Front. 2014; 1: 567
- 1d Aïssa C. Synthesis 2011; 3389
- 2 Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 3a Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1992; 33: 7849
- 3b Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055
- 4a Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
- 4b Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
- 4c Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
- 4d Zhao J, Duan X, Guo L.-N. Chin. J. Org. Chem 2017; 37: 2498
- 4e Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 5a Lu B, Cheng Y, Chen L.-Y, Xiao W.-J. ACS Catal. 2019; 9: 8159
- 5b He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
- 5c Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
- 5d Zhao B, Chen C, Lv J, Shi Z. Org. Chem. Front. 2018; 5: 2719
- 5e Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
- 6a Tang Y.-Q, Yang J.-C, Wang L, Guo L.-N. Org. Lett. 2019; 21: 5178
- 6b Yang L, Zhang J.-Y, Duan X.-H, Gao P, Jiao J, Guo L.-N. J. Org. Chem. 2019; 84: 8615
- 6c Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
- 6d Liu Z, Shen H, Xiao H, Wang Z, Zhu L, Li C. Org. Lett. 2019; 21: 5201
- 6e Ai W, Liu Y, Wang Q, Liu Q. Org. Lett. 2018; 20: 409
- 6f Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
- 6g Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
- 7 Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
- 8a Cao J, Chen L, Sun F.-N, Sun Y.-L, Jiang K.-Z, Yang K.-F, Xu Z, Xu L.-W. Angew. Chem. Int. Ed. 2019; 58: 897
- 8b Zhang Z.-Z, Han Y.-Q, Zhan B.-B, Wang S, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 13145
- 9 Murakami M, Amii H, Ito Y. Nature 1994; 370: 540
- 10 Shuai B, Li Z.-M, Qiu H, Fang P, Mei T.-S. Chin. J. Org. Chem 2019;
- 11a Künzi SA, Gershoni-Poranne R, Chen P. Organometallics 2019; 38: 1928
- 11b Werth J, Uyeda C. Chem. Sci. 2018; 9: 1604
- 11c Farley CM, Zhou Y.-Y, Banka N, Uyeda C. J. Am. Chem. Soc. 2018; 140: 12710
- 11d Pal S, Zhou Y.-Y, Uyeda C. J. Am. Chem. Soc. 2017; 139: 11686
- 11e Zhou Y.-Y, Uyeda C. Angew. Chem. Int. Ed. 2016; 55: 3171
- 11f Xu J, Samsuri NB, Duong HA. Chem. Commun. 2016; 52: 3372
- 11g Künzi SA, Sarria Toro JM, den Hartog T, Chen P. Angew. Chem. Int. Ed. 2015; 54: 10670
- 11h Toro JM. S, den Hartog T, Chen P. Chem. Commun. 2014; 50: 10608
- 12 Erickson LW, Lucas EL, Tollefson EJ, Jarvo ER. J. Am. Chem. Soc. 2016; 138: 14006
- 13a Yang X, Fleming FF. Acc. Chem. Res. 2017; 50: 2556
- 13b Purzycki M, Liu W, Hilmersson G, Fleming FF. Chem. Commun. 2013; 49: 4700
- 13c Fleming FF, Zhang Z, Liu W, Knochel P. J. Org. Chem. 2005; 70: 2200
-
14
Cyclopropanecarbonitriles 2; General Procedure
In a glove box, a 4 mL screw-capped vial was charged with the appropriate oxime ester 1 (0.2 mmol), NiCl2(glyme) (4 mg, 0.02 mmol), dtbbpy (5 mg, 0.02 mmol), and DMF (0.2 mL). The mixture was then stirred for 15 min at rt, and a 1.0 M solution of LiHMDS in THF (0.4 mL, 0.4 mmol) was added. The vial was removed from the glove box, and the mixture was stirred at rt for 12 h. The reaction was then quenched with 1 N sat. aq NH4Cl and diluted with EtOAc. The organic layer was separated, dried (Na2SO4), filtered, and concentrated under a vacuum. The product was then obtained by flash chromatography.
1-(4-sec-Butylphenyl)cyclopropanecarbonitrile (2d)
Yellow oil; yield: 35.85 mg (90%). 1H NMR (400 MHz, CDCl3): δ = 7.19 (d, J = 8.2 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 2.45 (d, J = 7.2 Hz, 2 H), 1.84 (dt, J = 13.5, 6.7 Hz, 1 H), 1.72–1.66 (m, 2 H), 1.41–1.34 (m, 2 H), 0.89 (d, J = 6.6 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 141.29, 133.20, 129.59, 125.59, 122.82, 44.87, 30.17, 22.29, 17.93, 13.50. HRMS (EI): m/z [M]+ calcd for C14H17N: 199.1356; found: 199.1355.
1-(Phenylselanyl)cyclopropanecarbonitrile (2l)
Yellow oil; yield: 39.69 mg (89%). 1H NMR (400 MHz, CDCl3): δ = 7.70–7.61 (m, 2 H), 7.38 (dd, J = 5.0, 1.9 Hz, 3 H), 1.74–1.67 (m, 2 H), 1.41–1.35 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 133.74, 129.58, 128.82, 128.27, 122.70, 18.31, 2.62. HRMS (EI): m/z [M]+ calcd for C10H9N80Se: 222.9895; found: 222.9894.
For selected reviews on cycloketone oximes, see:
For selected examples on ring cleavage of cyclobutanone oximes via photocatalysis, see:
For selected examples on ring cleavage of cyclobutanone oximes via metal catalysis, see: